用户名: 密码: 验证码:
基于能量法的地下隧洞动静力稳定性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic and Static Stability Analysis of the Underground Tunnel Based on Energy Method
  • 作者:白琦 ; 肖明
  • 英文作者:BAI Qi;XIAO Ming;State Key Lab.of Water Resources and Hydropower Eng.Sci.,Wuhan Univ.;Key Lab.of Rock Mechanics in Hydraulic Structural Eng.of Ministry of Education,Wuhan Univ.;
  • 关键词:能量 ; 岩体单元 ; 整体破坏 ; 地下隧洞 ; 稳定性 ; 地震
  • 英文关键词:energy;;rock mass element;;global failure;;underground tunnel;;stability;;earthquake
  • 中文刊名:SCLH
  • 英文刊名:Advanced Engineering Sciences
  • 机构:武汉大学水资源与水电工程科学国家重点实验室;武汉大学水工岩石力学教育部重点实验室;
  • 出版日期:2018-05-05 23:55
  • 出版单位:工程科学与技术
  • 年:2018
  • 期:v.50
  • 基金:国家重点基础研究发展计划资助项目(2015CB057904);; 国家自然科学基金资助项目(51579191)
  • 语种:中文;
  • 页:SCLH201803030
  • 页数:9
  • CN:03
  • ISSN:51-1773/TB
  • 分类号:252-260
摘要
通过分析前人研究岩体单元变形破坏过程中能量演化的试验数据,表明岩体单元的可释放弹性能储能极限与岩体单元所受应力状态和岩性有关;基于岩体单元整体破坏失稳的定义,推导了不同应力状态下岩体单元的整体破坏失稳准则;基于热力学第二定律和最小能量原理,提出地下洞室动静力失稳判别准则;运用有限差分数值分析软件FLAC3D,以完建期有无地震动作用的某地下隧洞工程为例,分别进行有无支护工况下地下隧洞的动静力稳定性分析。研究表明:该地下隧洞在所有静力工况和地震工况3下只会发生应力型局部失稳,在地震工况1和2下极有可能发生应力型整体失稳。无支护工况、施加喷锚支护工况和施加喷锚与二衬支护工况下的地下隧洞受地震动作用后洞周发生整体破坏的岩体单元体积分别增加了1 553.15、1 091.79、223.07 m~3,可知施加衬砌支护后发生整体破坏的岩体单元体积的减少幅度大于施加喷锚支护后发生整体破坏的岩体单元体积的减少幅度,表明衬砌支护的抗震效果好于喷锚支护。本文提出的地下洞室动静力失稳判别准则可作为采用数值模拟手段研究地下洞室动静力稳定性的有效判据,研究成果能为地下洞室的设计和施工提供有益参考。
        The experimental data of previous researches on the energy evolution during the rock mass element's deformation and failure process was analyzed,and the conclusion shows that the releasable elastic strain energy limit of the rock mass element is related to the stress state and lithology.Then,the global failure and instability criterion for the rock mass element under different stress states was derived secondly based on the definition of global failure and instability.Moreover,the criterion for assessing dynamic and static instability of the underground cavern was proposed based on the second law of thermodynamics and the principle of minimum energy.Finally,the dynamic and static stability analysis of an underground tunnel with/without support was brought out based on the example of an underground tunnel under the action of earthquake motion in the construction period,by means of FLAC3 D.The results show that the stress-type local instability failure occurred in the underground tunnel in all of static conditions and also the third condition with earthquake occurring,and the stress-type global instability failure most probably occurred in the underground tunnel in the first and second earthquake conditions.After the action of an earthquake,the volume of global failure and instability's rock mass element was increased by 1553.15 m~3、1091.79 m~3 and 223.07 m~3,in the no-support condition,the shotcrete-bolt support condition and the shotcrete-bolt and lining support condition,,respectively,indicating that the earthquake-resistant effect of the lining support is better than that of the shotcrete-bolt support.The discriminant criterion for dynamic and static instability of the underground cavern proposed in this paper is a useful for the numerical simulations of dynamic and static stability of underground caverns,and the calculation results can provide useful references for the design and construction of underground caverns.
引文
[1]Cui Zhen,Sheng Qian,Leng Xianlun,et al.A review of study on seismic catastrophe of large-scale underground cavern group[J].Journal of Disaster Prevention and Mitigation Engineering,2013,33(5):606-616.[崔臻,盛谦,冷先伦,等.大型地下洞室群地震动力灾变研究综述[J].防灾减灾工程学报,2013,33(5):606-616.]
    [2]Zhang Yumin,Sheng Qian,Zhu Zeqi,et al.Some influence factors on displacement characteristics of cavern group under strong earthquake[J].Rock and Soil Mechanics,2010,31(11):3525 3530.[张玉敏,盛谦,朱泽奇,等.地震作用下大型地下洞室群位移特征的若干影响因素分析[J].岩土力学,2010,31(11):3525-3530.]
    [3]Zhang Yumin,Sheng Qian,Zhu Zeqi,et a.Influence of depth attenuation on seismic response of large underground cavern group[J].Rock and Soil Mechanics,2010,3 1(10):3197-3202.[张玉敏,盛谦,朱泽奇,等.深度衰减效应对大型地下洞室群强震响应的影响分析[J].岩土力学,2010,31(10):3197-3202.]
    [4]Lu Tao,Li Haibo,Yang Jianhong,et al.Comparison between2D and 3D numerical analysis for seismic response of Xiluodu underground caverns[J].Rock and Soil Mechanics,2009,30(3):721-728.[吕涛,李海波,杨建宏,等.溪洛渡地下洞室群地震响应的二维及三维数值模型比较分析研究[J].岩土力学,2009,30(3):721-728.]
    [5]Qian Qihu,Qi Chengzhi.Dynamic strength and dynamic fracture criteria of rock and rock mass[J].Journal of Tongji University(Natural Science),2008,36(12):1599-1605.[钱七虎,戚承志.岩石、岩体的动力强度与动力破坏准则[J].同济大学学报(自然科学版),2008,36(12):1599-1605.]
    [6]Qi Chengzhi,Qian Qihu.Physical mechanism of dependence of material strength on strain rate for rock-like material[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(2):177-181.[戚承志,钱七虎.岩石等脆性材料动力强度依赖应变率的物理机制[J].岩石力学与工程学报,2003,22(2):177-181.]
    [7]Li Haibo.Experimental and theoretical studies on mechanical properties of granite under dynamic compressive loads[J].Chinese Journal of Rock Mechanics and Engineering,2001,20(1):136.[李海波.花岗岩材料在动态压应力作用下力学特性的实验和模型研究[J].岩石力学与工程学报,2001,20(1):136.]
    [8]Li Xibing,Zhou Zilong,Ye Zhouyuan,et al.Study of rock mechanical characteristics under coupled static and dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(7):1387-1395.[李夕兵,周子龙,叶州元,等.岩石动静组合加载力学特性研究[J].岩石力学与工程学报,2008,27(7):1387-1395.]
    [9]Liang Changyu,Li Xiao,Wu Shuren.Research on energy characteristics of size effect of granite under low/intermediate strain rates[J].Rock and Soil Mechanics,2016,37(12):3472-3480.[梁昌玉,李晓,吴树仁.中低应变率加载条件下花岗岩尺寸效应的能量特征研究[J].岩土力学,2016,37(12):3472-3480.]
    [10]Pan Yue,Wang Zhiqiang.Research approach on increment of work and energy—Catastrophe theory of rock dynamic destabilization[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(9):1433-1438.[潘岳,王志强.岩体动力失稳的功、能增量——突变理论研究方法[J].岩石力学与工程学报,2004,23(9):1433-1438.]
    [11]Zhang Liming,Wang Zaiquan,Zhang Xiaojuan,et al.Fold catastrophe model of rock dynamic destabilization[J].Chinese Journal of Geotechnical Engineering,2009,31(4):552-557.[张黎明,王在泉,张晓娟,等.岩体动力失稳的折迭突变模型[J].岩土工程学报,2009,31(4):552-557.]
    [12]Xie Heping,Ju Yang,Li Liyun.Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(17):3003-3010.[谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.]
    [13]Li Q M.Strain energy density failure criterion[J].International Journal of Solids and Structures,2001,38(38/39):6997-7013.
    [14]Steffler E D,Epstein J S,Conley E G.Energy partitioning for a crack under remote shear and compression[J].International Journal of Fracture,2003,120(4):563-580.
    [15]Zhang Zhizhen.Energy evolution mechanism during rock deformation and failure[D].Beijing:China University of Mining and Technology,2013.[张志镇.岩石变形破坏过程中的能量演化机制[D].北京:中国矿业大学,2013.]
    [16]Song Yimin,Jiang Yaodong,Ma Shaopeng,et al.Evolution of deformation fields and energy in whole process of rock failure[J].Rock and Soil Mechanics,2012,33(5):1352-1356.[宋义敏,姜耀东,马少鹏,等.岩石变形破坏全过程的变形场和能量演化研究[J].岩土力学,2012,33(5):1352-1356.]
    [17]Zhao Yangsheng,Feng Zengchao,Wan Zhijun.Least energy priciple of dynamical failure of rock mass[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1781-1783.[赵阳升,冯增朝,万志军.岩体动力破坏的最小能量原理[J].岩石力学与工程学报,2003,22(1 1):1781-1783.]
    [18]Niu Zhiguo,Li Tongchun,Wang Yali.Synthesis of simulated earthquake waves based on hydraulic design response spectrum[J].Journal of Hohai University(Natural Sciences),2007,35(3):262-266.[牛志国,李同春,王亚莉.基于水工设计反应谱的人工地震波合成[J].河海大学学报(自然科学版),2007,35(3):262-266.]
    [19]Zhang Yuting,Xiao Ming,Zhang Zhiguo.Dynamic submodel method of earthquake response analysis of largescale underground caverns[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(Supp 2):3392-3400.[张雨霆,肖明,张志国.大型地下洞室群地震响应分析的动力子模型法[J].岩石力学与工程学报,2011,30(增2):3392-3400.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700