用户名: 密码: 验证码:
垂直管内水合物浆液流动特性的CFD-PBM数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Hydrate Slurry Flow Characteristics in Vertical Tubes by CFD-PBM
  • 作者:侯朋朋 ; 王春华 ; 潘振 ; 商丽艳 ; 韦雪蕾 ; 刘志明
  • 英文作者:Hou Pengpeng;Wang Chunhua;Pan Zhen;Shang Liyan;Wei Xuelei;Liu Zhiming;College of Petroleum Engineering,Liaoning Shihua University;
  • 关键词:天然气水合物 ; 垂直管 ; 群体平衡模型 ; 多相流 ; 气泡聚并与破碎
  • 英文关键词:Natural gas hydrate;;Vertical tube;;Population balance model;;Multiphase flow;;Bubble aggregation and crushing
  • 中文刊名:SYHX
  • 英文刊名:Journal of Petrochemical Universities
  • 机构:辽宁石油化工大学石油天然气工程学院;
  • 出版日期:2019-01-14 07:01
  • 出版单位:石油化工高等学校学报
  • 年:2019
  • 期:v.32;No.135
  • 基金:辽宁省高等学校优秀人才支持计划资助(LJQ2014038);; 辽宁省自然科学基金项目资助(201602470)
  • 语种:中文;
  • 页:SYHX201901011
  • 页数:7
  • CN:01
  • ISSN:21-1345/TE
  • 分类号:62-68
摘要
深海天然气水合物在固态开采过程中,当温度、压力平衡被打破时,开采管路中的水合物浆液由液固(水合物颗粒、海水)两相变为气液固(天然气、水合物颗粒、海水)三相的流动。以水合物浆液的气相为主要研究对象,采用CFD-PBM模型对气泡行为变化进行Fluent模拟,并对该模型进行了验证,模拟结果与实验值吻合度较高。结果表明,PBM模型模拟的浆液流态分布较为均匀,气泡的大小在流动过程中主要从小气泡到大气泡;气泡的初始速度对管道水利提升速度影响较大;在浆液湍动能为0.5 m2/s3、气含率为0.3时,气泡会出现二次聚并破碎。通过CFD-PBM计算得到水合物浆液体系中气泡大小分布能够较好的预测水合物颗粒分解出气相后的浆液流动特性。
        In the process of solid-state mining of deep-sea natural gas hydrates, when the balance of temperature and pressure is broken, the hydrate slurry in the production pipeline changes from liquid-solid(hydrate, seawater) two-phase to gas-liquid-solid(natural gas, hydrate,seawater). The three-phase flow of particles and seawater is the main research object in gas-liquid-solid threephase flow. The Fluent simulation of the hydrate slurry flow in the vertical production pipe is performed using the CFD-PBM model, and the model is verified. The simulation results are in good agreement with the experimental values. The results show that the distribution of flow patterns simulated by PBM model is relatively uniform, and the size of bubbles in the flow process is mainly from small to large,the initial velocity of bubbles has a great influence on the hydraulic lifting speed of the pipeline,the turbulent kinetic energy in the slurry is 0.5 m2/s3. When the content is 0.3, bubbles will appear to be secondarily broken and broken. The bubble size distribution in the hydrate slurry system can be predicted by CFD-PBM to better predict the flow characteristics of the hydrate slurry after it is decomposed by natural gas.
引文
[1]佟乐,杨双春,王璐,等.天然气水合物研究现状和前景分析[J].辽宁石油化工大学学报,2017,37(2):17-21.Tong L,Yang S C,Wang L,et al. Research stateand prospective of natural gas hydrates[J]. Journal of Liaoning Shihua University,2017,37(2):17-21.
    [2]江国业,王晓娅,孙鹏.基于正交试验设计的水合物浆液流动特性数值模拟[J].科技导报,2014,32(13):23-27.Jiang G Y,Wang X Y,Sun P. Numerical simulation of hydrate slurry flow based on orthogonal design[J]. Science&Technology Review,2014,32(13):23-27.
    [3]宫清君,马贵阳,潘振,等.管输过程中天然气水合物沉降规律计算研究[J].辽宁石油化工大学学报,2017,37(3):19-23.Gong Q J,Ma G Y,Pan Z,et al.Study on the law of natural gas hydrate sedimentationinthe process of pipeline transportation[J].Journal of Liaoning Shihua University,2017,37(3):19-23.
    [4]马贵阳,宫清君,潘振,等.基于支持向量机结合遗传算法的天然气水合物相平衡研究[J].天然气工业,2017,37(5):46-52.Ma G R,Gong Q G,Pan Z,et al.GA-SVM based study on natural gas hydrate phase equilibrium[J].Natural Gas Industry,2017,37(5):46-52.
    [5] Balakin B V,Lo S,Kosinski P,et al. Modelling agglomeration and deposition of gas hydrates in industrial pipelines with combined CFD-PBM technique[J].Chemical Engineering Science,2016,153(10):45-57.
    [6]王武昌,陈鹏,李玉星,等.天然气水合物浆在管道中的流动沉积特性[J].天然气工业,2014,34(2):99-104.Wang W C,Chen P,Li Y X,et al.Flow and deposition characteristics of natural gas hydrate in pipelines[J].Natural Gas Industry,2014,34(2):99-104.
    [7] Ma S,Pan Z,Li P,et al. Experimental study on preparation of natural gas hydrate by crystallization[J]. China Petroleum Processing&Petrochemical Technology,2017,19(1):106-113.
    [8]李文昭,潘振,马贵阳,等.表面活性剂吸附对促进甲烷水合物生成效果的影响[J].化工学报,2017,68(4):1542-1549.Li W Z,Pan Z,Ma G Y,et al. Promotion effects of surfactant adsorption on formation of methane hydrates[J]. CIESC Journal,2017,68(4):1542-1549.
    [9]刘军,马贵阳,潘振,等.水合物晶核充分发展对水合物生成量影响的实验研究[J].工程热物理学报,2016,37(5):941-946.Liu J,Ma G Y,Pan Z,et al. A experimental study on the change of the number of hydrate formation affected by hydrate nucleation fully development[J].Journal of Engineering Thermophysics,2016,37(5):941-946.
    [10] Jassim E,Abdi M A,Muzychka Y.A new approach to investigate hydrate deposition in gas-dominated flowlines[J].Journal of Natural Gas Science&Engineering,2010,2(4):163-177.
    [11] Lorenzo M D,Aman Z M,Soto G S,et al.Hydrate formation in gas-dominant systems using a single-pass flowloop[J].Energy&Fuels,2014,28(5):3043-3052.
    [12]宋光春,李玉星,王武昌,等.基于群体平衡理论的管内水合物浆流动特性数值模拟[J].化工进展,2018,37(2):561-568.Song G C,Li Y X,Wang W C,et al. Numerical simulation of pipeline hydrate slurry flow behavior based on population balance theory[J].Chemical Industry and Engineering Progress,2018,37(2):561-568.
    [13]丁麟,史博会,吕晓方,等.天然气水合物的生成对浆液流动稳定性影响综述[J].化工进展,2016,35(10):3118-3128.Ding L,Shi B H,LüX F,et al. Investigation on the effects of natural gas hydrate formation on slurry flow stability[J].Chemical Industry and Engineering Progree,2016,35(10):3118-3128.
    [14] Xu H L,Li L,Yang F Q.Three-phase flow of submarine gas hydrate pipe transport[J].Journal of Central South University,2015,22(9):3650-3656.
    [15]屈科辉.基于固态开采的海底天然气水合物水力输送研究[D].长沙:中南大学机电工程学院,2010:4-16.
    [16] Buffo A,Vanni M,Marchisio D L. Multidimensional population balance model for the simulation of turbulent gas-liquid systems in stirred tank reactors[J].Chemical Engineering Science,2012,70(4):31-44.
    [17]王铁峰.气液(浆)反应器流体力学行为的实验研究和数值模拟[D].北京:北京大学,2004.
    [18] Balakin B V,Pedersen H,Kilinc Z,et al.Turbulent flow of frezon R11 hydrate slurry[J].Journal of Petroleum Science&Engineering,2010,70(3):177-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700