用户名: 密码: 验证码:
缩放型冷却孔结构参数对燃气轮机动叶气膜冷却效果的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Structural Parameters of Convergent-divergent Shaped Holes on the Film Cooling Effectiveness of a Gas Turbine Moving Blade
  • 作者:张浩 ; 李录平 ; 唐学智 ; 黄章俊
  • 英文作者:ZHANG Hao;LI Luping;TANG Xuezhi;HUANG Zhangjun;Changsha University of Science and Technology;
  • 关键词:燃气轮机 ; 缩放型冷却孔 ; 动叶片 ; 结构参数 ; 扩张角度 ; 数值模拟 ; 气膜冷却效果评价
  • 英文关键词:gas turbine;;convergent-divergent shaped hole;;moving blade;;structural parameters;;expansion angle;;numerical simulation;;film cooling effect evaluation
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:长沙理工大学能源与动力工程学院;
  • 出版日期:2019-04-20
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.619
  • 基金:湖南省自然科学基金项目(2018JJ2442);; 中国南方电网有限责任公司科技计划项目(K-GD2014-0583002-002)~~
  • 语种:中文;
  • 页:ZGDC201908022
  • 页数:10
  • CN:08
  • ISSN:11-2107/TM
  • 分类号:222-230+364
摘要
为了增强燃气轮机动叶的气膜冷却效果,提出一种缩放型气膜孔结构,采用数值模拟的研究方法,模拟了吹风比M?1.0、主流湍流度Tu?5%时,分别带有扩张角度??0?、??5?、??10?和??15?的4种缩放型冷却孔叶片的气膜冷却效果,并用平均气膜冷却效率和不均匀系数两个新型评价指标辅以评价叶片冷却效果。研究结果表明:缩放孔型的扩张角度由??0?增加至??10?的过程中,无论是在叶片压力面还是吸力面上,气膜冷却效率整体呈递增趋势,其纵向平均气膜冷却效率和横向平均气膜冷却效率逐渐增大,不均匀系数降低,冷却效果增强。当扩张角度增大至??15?时,相对于带有??10?孔型的叶片,其压力面和吸力面上的气膜冷却效率出现下降,纵向平均气膜冷却效率和横向平均气膜冷却效率减小,不均匀系数增大,冷却效果变差;在带有不同孔型的叶片的中后缘位置都出现了明显的高冷却区域,带有扩张角度??10?孔型的叶片在该区域的冷却优势更明显;4种孔型在叶片吸力面上气膜覆盖的整体均匀度都要比压力面高。
        In order to improve the air film cooling effect of moving blades in gas turbine, a convergent-divergent shaped air film hole structure was put forward. The method of numerical simulation was applied to analyze the film cooling effect of convergent-divergent shaped holes on the blade. The convergent-divergent shaped holes with such expansion angle as ??0?,???5?,???10? and???15? were simulated when blowing ratio M?1.0 and mainstream turbulence degree Tu?5%.Such two new kinds of evaluation indicators as average film cooling efficiency and cooling non-uniformity coefficient were used to evaluate the film cooling efficiency. The research results show that when the expansion angle increases from???0? to???10?, the air film cooling effectiveness increases on both the blade pressure surface and suction surface,and the longitudinal and transverse average film cooling efficiency increase gradually, and the cooling non-uniformity coefficient decrease, and the effect of film cooling is enhanced.When the expansion angle increases from ??10? to ??15?, the air film cooling effect decreases, and the longitudinal and transverse average film cooling efficiency decrease gradually,the cooling non-uniformity coefficient increases, and the cooling effect becomes worse. In the middle and tail regions of the blade with different convergent-divergent shaped holes,obvious high cooling efficiency area has appeared, the advantage of blades with expansion angle ??10? is more obvious. Film coverage uniformity on the suction surface is better than that on the pressure surface.
引文
[1]蒋洪德,任静,李雪英,等.重型燃气轮机现状与发展趋势[J].中国电机工程学报,2014,34(29):5096-5102.Jiang Hongde,Ren Jing,Li Xueying,et al.Status and development trend of the heavy duty gas turbine[J].Proceedings of the CSEE,2014,36(29):5096-5102(in Chinese).
    [2]韩介勤,桑地普·杜达,斯瑞纳斯·艾卡德.燃气轮机传热和冷却技术[M].程代京,谢永慧,译.西安:西安交通大学出版社,2005:1-4.Han J C,Dutta S,Ekkad S V.Gas turbine heat transfer and cooling technology[M].Cheng Daijing,Xie Yonghui,trans.Xi’an:Xi'an Jiaotong University Press,2005:1-4(in Chinese).
    [3]Bunker R S.A review of shaped hole turbine film-cooling technology[J].Journal of Heat Transfer,2005,127(4):441-453.
    [4]张浩,李录平,唐学智,等.重型燃气轮机涡轮叶片冷却技术研究进展[J].燃气轮机技术,2017,30(2):1-7.Zhang Hao,LI Luping,Tang Xuezhi,et al.Review of heavy-duty gas turbine blade cooling technology[J].Gas Turbine Technology,2017,30(2):1-7(in Chinese).
    [5]孟通,朱惠人,刘存良,等.边倒圆型气膜孔流动换热特性研究[J].推进技术,2018,39(5):1067-1076.Meng Tong,Zhu Huiren,Liu Cunliang,et al.Experimental and numerical study on film cooling performance of radiusing-type hole[J].Journal of Propulsion Technology,2018,39(5):1067-1076(in Chinese).
    [6]Goldstein R J,Eckert E R G,Burggraf F.Effects of hole geometry and density on three-dimensional film cooling[J].International Journal of Heat and Mass Transfer,1974,17(5):595-607.
    [7]Gritsch M,Colban W,Scha?r H,et al.Effect of hole geometry on the thermal performance of fan-shaped film cooling holes[J].Journal of Turbomachinery,2005,127(4):718-725.
    [8]刘钊,杨星,丰镇平.燃气轮机透平叶片传热和冷却研究:气膜冷却[J].热力透平,2014,43(1):1-9.Liu Zhao,Yang Xing,Feng Zhenping.Study on heat transfer and cooling in gas turbine blade:film cooling[J].Thermal Turbine,2014,43(1):1-9(in Chinese).
    [9]Okita Y,Nishiura M.Film effectiveness performance of an arrowhead-shaped film-cooling hole geometry[J].Journal of Turbomachinery,2007,129(2):331-339.
    [10]肖阳,金涛,何立明,等.心形孔气膜冷却特性的数值模拟[J].航空动力学报,2016,31(6):1335-1342.Xiao Yang,Jin Tao,He Liming,et al.Numerical simulation on film cooling characteristics of heart shaped hole[J].Journal of Aerospace Power,2016,31(6):1335-1342(in Chinese).
    [11]Chang Jianlong,Shao Xudong,Li Jiangman,et al.Acomparison of classical and pulsating jets in crossflow at various strouhal numbers[J].Mathematical Problems in Engineering,2017,2017:5279790.
    [12]朱林中.高温合金毫秒激光打孔实验与数值模拟研究[D].镇江:江苏大学,2017.Zhu Linzhong.Research on experiment and numerical simulation of micro holes drilling on superalloy by millisecond laser[D].Zhenjiang:Jiangsu University,2017(in Chinese).
    [13]于飞龙,上官博,李园园,等.重型燃气轮机透平第一级动叶复合冷却数值研究[J].中国电机工程学报,2016,36(1):179-186.Yu Feilong,Shangguan Bo,Li Yuanyuan,et al.Numerical investigation on compound cooling effect of the heavy-duty gas turbine first stage blade[J].Proceedings of the CSEE,2016,36(1):179-186(in Chinese).
    [14]王晋声,罗磊,崔涛,等.燃气涡轮导叶冷却结构设计及数值模拟[J].中国电机工程学报,2014,34(5):800-807.Wang Jinsheng,Luo Lei,Cui Tao,et al.Cooling structure design and numerical simulation in gas turbine guide vanes[J].Proceedings of the CSEE,2014,34(5):800-807(in Chinese).
    [15]罗磊,陈朔,刘维,等.燃气透平带气膜动叶设计流程及分析[J].中国电机工程学报,2015,35(16):4112-4121.Luo Lei,Chen Shuo,Liu Wei,et al.Process and analysis of cooling structure design for gas turbine rotor blades with film cooling[J].Proceedings of the CSEE,2015,35(16):4112-4121(in Chinese).
    [16]唐学智,李录平,黄章俊,等.孔间距对燃气轮机动叶气膜冷却效果的影响[J].动力工程学报,2018,38(2):105-113,131.Tang Xuezhi,Li Luping,Huang Zhangjun,et al.Influence of hole spacing on the film cooling effectiveness of a gas turbine moving blade[J].Journal of Chinese Society of Power Engineering,2018,38(2):105-113,131(in Chinese).
    [17]谢永慧,景祺,张荻,等.燃气轮机透平叶片冷却通道传热特性研究进展[J].中国电机工程学报,2017,37(6):1711-1720.Xie Yonghui,Jing Qi,Zhang Di,et al.Review on research of heat transfer performance for gas turbine blade cooling channel[J].Proceedings of the CSEE,2017,37(6):1711-1720(in Chinese).
    [18]沈菁菁.燃气轮机叶片气膜冷却数值模拟[D].上海:上海发电设备成套设计研究院,2014.Shen Jingjing.Numerical simulation of film cooling on gas turbine blade[D].Shanghai:Shanghai Power Equipment Research Institute,2014(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700