用户名: 密码: 验证码:
多掺杂协同调控碲化锡热导率和功率因子提升热电性能(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-doping in SnTe: Improvement of Thermoelectric Performance due to Lower Thermal Conductivity and Enhanced Power Factor
  • 作者:檀小芳 ; 端思晨 ; 王泓翔 ; 吴庆松 ; 李苗苗 ; 刘国强 ; 徐静涛 ; 谈小建 ; 邵和助 ; 蒋俊
  • 英文作者:TAN Xiao-Fang;DUAN Si-Chen;WANG Hong-Xiang;WU Qing-Song;LI Miao-Miao;LIU Guo-Qiang;XU Jing-Tao;TAN Xiao-Jian;SHAO He-Zhu;JIANG Jun;Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences;Nano Science and Technology Institute, University of Science and Technology of China;University of Chinese Academy of Sciences;Laboratory of Advanced Materials, Fudan University;College of Mechanics and Materials, Hohai University;
  • 关键词:碲化锡 ; 热电性能 ; 共振态 ; 晶格热导率
  • 英文关键词:tin telluride;;thermoelectric performance;;resonant state;;lattice thermal conductivity
  • 中文刊名:WGCL
  • 英文刊名:Journal of Inorganic Materials
  • 机构:中国科学院宁波材料技术与工程研究所;中国科学技术大学纳米科学技术学院;中国科学院大学;复旦大学先进材料实验室;河海大学力学与材料学院;
  • 出版日期:2019-03-18 11:00
  • 出版单位:无机材料学报
  • 年:2019
  • 期:v.34;No.233
  • 基金:National Key Research and Development Program of China(2016YFC0101801,2017YFC0111602);; Natural Science Foundation of Zhejiang Province(LY18A040008,LY18E020017);; Zhejiang Provincial Science Fund for Distinguished Young Scholars(LR16E020001);; Youth Innovation Promotion Association of CAS under Grant No.2018337
  • 语种:英文;
  • 页:WGCL201903013
  • 页数:6
  • CN:03
  • ISSN:31-1363/TQ
  • 分类号:105-110
摘要
碲化锡(SnTe)是一种碲化铅的无铅替代物,在热电领域有广阔的应用前景。但是,纯相碲化锡样品具有较高的热导率与较低的塞贝克系数,导致热电性能较差。本研究通过多重掺杂可以显著降低热导率,提升塞贝克系数,从而提升热电性能。Sn Te热压样品的晶格热导率随着Se和S的引入明显降低,比如Sn Te_(0.7)S_(0.15)Se_(0.15)室温下晶格热导率仅为0.99 W?m~(–1)?K~(–1)。透射电子显微镜显示,SnTe掺杂样品内存在大量的纳米沉淀相与晶格位错。在此基础上,掺杂In在价带顶引入共振态大幅提高了样品的塞贝克系数。实验表明通过多重掺杂可以有效提升碲化锡的热电性能,其中样品Sn_(0.99)In_(0.01)Te_(0.7)S_(0.15)Se_(0.15)在850 K时峰值ZT值达到0.8,这说明碲化锡的确是一种有应用前景的中温区热电材料。
        In recent years,tin telluride(SnTe)has attracted considerable interest due to its potential thermoelectric application as a lead-free rock-salt analogue of PbTe.However,pristine SnTe samples show high thermal conductivity and low Seebeck coefficients,resulting in poor thermoelectric performance.In this study,the thermoelectric performance of SnTe was enhanced by well-designed multi-doping,where significantly reduced thermal conductivity and improved Seebeck coefficients were achieved at the same time.The doped SnTe samples were prepared by hot pressing.The lattice thermal conductivity of SnTe samples is obviously decreased by alloying with Se and S.The transmission electron microscope shows the existence of larger amount of nano-precipitates and the lattice distortions in the alloyed samples.For example,the lattice thermal conductivity of SnTe_(0.7)S_(0.15)Se_(0.15) sample is reduced to 0.99 W?m~(–1)?K~(–1) at 300 K.The results reveal that the Seebeck coefficients are improved by introducing In resonant state in the band structure of SnTe.The experiments suggest the effectiveness of designed multi-doping in the thermoelectric performance enhancement of SnTe,and a promising ZT of 0.8 at 850 K is achieved in Sn_(0.99)In_(0.01)Te_(0.7)S_(0.15)Se_(0.15.)The discovery suggests that SnTe is a promising medium-temperature thermoelectric candidate.
引文
[1]SOOTSMAN J R,CHUNG D Y,KANATZIDIS M G.New and old concepts in thermoelectric materials.Angewandte Chemie International Edition,2009,48(46):8616-8639.
    [2]KANATZIDIS M G.Nanostructured thermoelectrics:the new paradigm?Chemistry of Materials,2009,22(3):648-659.
    [3]ZHAO L D,DRAVID V P,KANATZIDIS M G.The panoscopic approach to high performance thermoelectrics.Energy&Environmental Science,2014,7(1):251-268.
    [4]VINEIS C J,SHAKOURI A,MAJUMDAR A,et al.Nanostructured thermoelectrics:big efficiency gains from small features.Advanced Materials,2010,22(36):3970-3980.
    [5]HEREMANS J P,JOVOVIC V,TOBERER E S,et al.Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states.Science,2008,321(5888):554-557.
    [6]JAWORSKI C M,KULBACHINSKII V,HEREMANS J P.Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power.Physical Review B,2009,80(23):233201-1-4.
    [7]BILC D,MAHANTI S D,QUAREZ E,et al.Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m:the role of Ag-Sb microstructures.Physical Review Letters,2004,93(14):146403-1-4.
    [8]AHN K,HAN M K,HE J,et al.Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit.Journal of the American Chemical Society,2010,132(14):5227-5235.
    [9]AHMAD S,MAHANTI S D,HOANG K,et al.Ab initio studies of the electronic structure of defects in PbTe.Physical Review B,2006,74(15):155205-1-13.
    [10]ZHANG Q,WANG H,LIU W,et al.Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide.Energy&Environmental Science,2012,5(1):5246-5251.
    [11]HEREMANS J P,WIENDLOCHA B,CHAMOIRE A M.Resonant levels in bulk thermoelectric semiconductors.Energy&Environmental Science,2012,5(2):5510-5530.
    [12]PEI Y,SHI X,LALONDE A,et al.Convergence of electronic bands for high performance bulk thermoelectrics.Nature,2011,473(7345):66.
    [13]LIU W,TAN X,YIN K,et al.Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-x Snx solid solutions.Physical Review Letters,2012,108(16):166601-1-5.
    [14]ZHAO L D,WU H J,HAO S Q,et al.All-scale hierarchical thermoelectrics:MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance.Energy&Environmental Science,2013,6(11):3346-3355.
    [15]YANG J,MEISNER G P,CHEN L.Strain field fluctuation effects on lattice thermal conductivity of Zr NiSn-based thermoelectric compounds.Applied Physics Letters,2004,85(7):1140-1142.
    [16]ABELES B.Lattice thermal conductivity of disordered semiconductor alloys at high temperatures.Physical Review,1963,131(5):1906-1911.
    [17]ZEIER W G,PEI Y,POMREHM G,et al.Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn1-xFexGe Se4.Journal of the American Chemical Society,2013,135(2):726-732.
    [18]TAN G,LIU W,CHI H,et al.Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1-x via band structure modification and significant point defect scattering.Acta Materialia,2013,61(20):7693-7704.
    [19]ZHAO L D,TAN G,HAO S,et al.Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe.Science,2015,351(6269):141-144.
    [20]MINNICH A J,DRESSELHAUS M S,REN Z F,et al.Bulk nanostructured thermoelectric materials:current research and future prospects.Energy&Environmental Science,2009,2(5):466-479.
    [21]ZHANG Q,LIAO B,LAN Y,et al.High thermoelectric performance by resonant dopant indium in nanostructured SnTe.Proceedings of the National Academy of Sciences,2013,110(33):13261-13266.
    [22]TAN G,LIU W,WANG S,et al.Rapid preparation of CeFe4Sb12Skutterudite by melt spinning:rich nanostructures and high thermoelectric performance.Journal of Materials Chemistry A,2013,1(40):12657-12668.
    [23]ZHAO L D,LO S H,HE J,et al.High performance thermoelectrics from earth-abundant materials:enhanced figure of merit in Pb S by second phase nanostructures.Journal of the American Chemical Society,2011,133(50):20476-20487.
    [24]ZHAO L D,HE J,WU C I,et al.Thermoelectrics with earth abundant elements:high performance p-type PbS nanostructured with SrS and CaS.Journal of the American Chemical Society,2012,134(18):7902-7912.
    [25]ZHAO L D,HE J,HAO S,et al.Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valenceband offset engineering using CdS and ZnS.Journal of the American Chemical Society,2012,134(39):16327-16336.
    [26]LEE Y,LO S H,ANDROULAKIS J,et al.High-performance tellurium-free thermoelectrics:all-scale hierarchical structuring of p-type PbSe-MSe systems(M=Ca,Sr,Ba).Journal of the American Chemical Society,2013,135(13):5152-5160.
    [27]BISWAS K,HE J,ZHANG Q,et al.Strained endotaxial nanostructures with high thermoelectric figure of merit.Nature Chemistry,2011,3(2):160-166.
    [28]BISWAS K,HE J,BLUM I D,et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures.Nature,2012,489(7416):414-418.
    [29]TAN G,ZHENG Y,TANG X.High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures.Applied Physics Letters,2013,103(18):7837-1-5.
    [30]TAN G J,SHI F Y,HAO S Q,et al.Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe.Journal of the American Chemical Society,2015,137(35):11507-11516.
    [31]ROGERS L M.Drift mobility of light-mass holes in PbTe heavily doped with Na.Journal of Physics D Applied Physics,1968,1(8):1067.
    [32]HE J,XU J,LIU G,et al.Enhanced thermopower in rock-salt SnTe-CdTe from band convergence.RSC Advances,2016,6(38):32189-32192.
    [33]TAN G,ZHAO L D,SHI F,et al.High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach.Journal of the American Chemical Society,2014,136(19):7006-7017.
    [34]TAN G J,SHI F Y,HAO S Q,et al.Codoping in SnTe:enhancement of thermoelectric performance through synergy of resonance levels and band convergence.Journal of the American Chemical Society,2015,137(15):5100-5112.
    [35]TAN G,SHI F,DOAK J,et al.Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe.Energy&Environmental Science,2014,8(1):267-277.
    [36]WEN L,ZHENG L,GE B,et al.Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects.Advanced Materials,2017,29(17):1605887-1-8.
    [37]HE J,TAN X,XU J,et al.Valence band engineering and thermoelectric performance optimization in SnTe by Mn-alloying via a zone-melting method.Journal of Materials Chemistry A,2015,3(39):19974-19979.
    [38]TAN G J,SHI F Y,HAO S Q,et al.Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe.Journal of the American Chemical Society,2015,137(35):11507-11516.
    [39]LI W,CHEN Z,LIN S,et al.Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys.Journal of Materiomics,2015,1(4):307-315.
    [40]ZHENG L,LI W,LIN S,et al.Interstitial defects improving thermoelectric SnTe in addition to band convergence.ACS Energy Letters,2017,2(3):563-568.
    [41]WU H,CHANG C,FENG D,et al.Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe.Energy&Environmental Science,2015,8(11):3298-3312.
    [42]BANIK A,SHENOY U S,ANAND S,et al.Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties.Chemistry of Materials,2015,27(2):581-587.
    [43]TAN X,SHAO H,HU T,et al.High thermoelectric performance in two-dimensional graphyne sheets predicted by first-principles calculations.Physical Chemistry Chemical Physics,2015,17(35):22872-22881.
    [44]WU H,LU X,WANG G,et al.Sodium-doped tin sulfide single crystal:a nontoxic earth-abundant material with high thermoelectric performance.Advanced Energy Materials,2018,8(20):1800087-1-8.
    [45]ZHAO L D,HAO S,LO S H,et al.High thermoelectric performance via hierarchical compositionally alloyed nanostructures.Journal of the American Chemical Society,2013,135(19):7364-7370.
    [46]POUDEL B,HAO Q,MA Y,et al.High thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.Science,2008,320(5876):634-638.
    [47]ZHAO L D,ZHANG X,WU H,et al.Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe.Journal of the American Chemical Society,2016,138(7):2366-2373.
    [48]LIU H,SHI X,XU F,et al.Copper ion liquid-like thermoelectrics.Nature Materials,2012,11(5):422-425.
    [49]HEY,DAY T,ZHANG T,et al.High thermoelectric performance in non-toxic earth-abundant copper sulfide.Advanced Materials,2014,26(23):3974-3978.
    [50]ANANYA B,KANISHKA B.Lead-free thermoelectrics:promising thermoelectric performance in p-type SnTe1-xSex system.Journal of Materials Chemistry A,2014,2(25):9620-9625.
    [51]TAN X,TAN X,LIU G,et al.Optimizing the thermoelectric performance of In-Cd codoped SnTe by introducing Sn vacancies.Journal of Materials Chemistry C,2017,5(30):7504-7509.
    [52]TAN X J,LIU G Q,XU J T,et al.Element-selective resonant state in M-doped SnTe(M=Ga,In,and Tl).Physical Chemistry Chemical Physics,2016,18(30):20635-20639.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700