用户名: 密码: 验证码:
硅基非氧化物陶瓷复合材料的环境障涂层系统的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The process of environmental barrier coating system for silica-based non-oxide ceramic matrix composites
  • 作者:谭僖 ; 陈孝业 ; 张小锋 ; 刘伟 ; 曹腊梅
  • 英文作者:TAN Xi;CHEN Xiaoye;ZHANG Xiaofeng;LIU Wei;CAO Lamei;Guangdong Institute of New Materials;Hunan South General Aviation Engine Co.Ltd.;AECC Beijing Institute of Aeronautical Materials;
  • 关键词:环境障涂层 ; 硅基非氧化物 ; 陶瓷基复合材料 ; 高温结构材料
  • 英文关键词:environmental barrier coating;;silica-based non-oxide;;ceramic matrix composites;;high temperature structural materials
  • 中文刊名:GDYS
  • 英文刊名:Materials Research and Application
  • 机构:广东省新材料研究所;湖南南方通用航空发动机有限公司;中国航发北京航空材料研究院;
  • 出版日期:2019-06-15
  • 出版单位:材料研究与应用
  • 年:2019
  • 期:v.13;No.50
  • 基金:国家自然科学基金(51801034);; 广东省自然科学基金(2017A030310315,2016A030312015)
  • 语种:中文;
  • 页:GDYS201902018
  • 页数:8
  • CN:02
  • ISSN:44-1638/TG
  • 分类号:76-83
摘要
先进的硅基非氧化物陶瓷及其复合材料具有优异的高温力学性能和热稳定性,是未来先进的空天飞行器及地面燃气轮机热端部件的候选材料.但是硅基非氧化物结构材料在服役过程中存在抗水汽氧化性能不足等问题,需要使用环境障涂层(EBC)系统来提供额外防护.简单阐述了硅基非氧化物陶瓷在高温水汽氧化环境中的失效机制,重点介绍了EBC系统的发展历史,以及近年来NASA新型EBC系统的研究进展.
        Due to their excellent high temperature mechanical properties and thermostability, advanced silica-based non-oxide ceramics and ceramic matrix composites were considered as candidate materials for hot end components of future advanced aerospace vehicle and land gas turbine. However, the poor resistance to water vapor oxidation of silica-based non-oxide structural materials was failed to fulfill the requirement of service, unless employing extra protection from environmental barrier coating(EBC) system. In this paper, failure mechanism of silica-based non-oxide ceramic under oxidation conditions with high-temperature water vapor, process of EBC system development and recent evolution of NASA novel EBC system were discussed.
引文
[1] MENON M N,FANG H T,WU D C,et al.Creep and stress rupture behavior of an advanced silicon nitride:part I,experimental observations [J].Journal of the American Ceramic Society,1994,77(5):1217-1227.
    [2] MENON M N,FANG H T,WU D C,et al.Creep and stress rupture behavior of an advanced silicon nitride:part II,creep rate behavior [J].Journal of the American Ceramic Society,1994,77(5):1228-1234.
    [3] MENON M N,FANG H T,WU D C,et al.Creep and stress rupture behavior of an advanced silicon nitride:part III,stress rupture and the nonkman-grant Relationship [J].Journal of the American Ceramic Society,1994,77(5):1235-1241.
    [4] 黄光宏,王宁,何利民,et al.环境障涂层研究进展 [J].失效分析与预防,2007,2(1):59-64.
    [5] GASDASKA C J.Tensile creep in an in situ reinforced silicon nitride [J].Journal of the American Ceramic Society,1994,77(9):2408-2418.
    [6] KLEMM H,HERRMANN M,SCHUBERT C.High temperature oxidation and corrosion of silicon-based non-oxide ceramics [J].Journal of engineering for gas turbines and power,2000,122(1):13-18.
    [7] KLEMM H,SCHUBERT C.Silicon nitride/molybdenum disilicide composite with superior long-term oxidation resistance at 1500℃ [J].Journal of the American Ceramic Society,2001,84(10):2430-2432.
    [8] BANSAL N P.Handbook of ceramic composites [M].Berlin:Springer Science & Business Media,2006.
    [9] BALDUS P,JANSEN M,SPORN D.Ceramic fibers for matrix composites in high-temperature engine applications [J].Science,1999,285(5428):699-703.
    [10] OPILA E J,HANN R E.Paralinear oxidation of CVD SiC in water vapor [J].Journal of the American Ceramic Society,1997,80(1):197-205.
    [11] OPILA E J,FOX D S,JACOBSON N S.Mass spectrometric identification of Si-O-H (g) species from the reaction of silica with water vapor at atmospheric pressure [J].Journal of the American Ceramic Society,1997,80(4):1009-1012.
    [12] OPILA E J,SMIALEK J L,ROBINSON R C,et al.SiC recession caused by SiO2 scale volatility under combustion conditions:II,thermodynamics and gaseous-diffusion model [J].Journal of the American Ceramic Society,1999,82(7):1826-1834.
    [13] LEE K N,JACOBSON N S,MILLER R A.Refractory oxide coatings on SiC ceramics [J].MRS Bulletin,1994,19(10):35-38.
    [14] LEE K N,MILLER R A.Durability of mullite/YSZ-coated SiC in 90% H2O/O2 [J].NASA,1998,1(19990027441):1-10.
    [15] OHJI T,SINGH M.Engineered ceramics:current status and future prospects [M].Hoboken:John Wiley & Sons,2016.
    [16] KRIVEN W M.Developments in Strategic ceramic materials:a Collection of papers presented at the 39th international conference on advanced ceramics and composites [M].Hoboken:John Wiley & Sons,2016.
    [17] TONG M T,JONES S M,ARCARA P C,et al.A probabilistic assessment of NASA ultra-efficient engine technologies for a large subsonic transport;proceedings of the ASME turbo expo 2004:Power for land,sea,and air [C].New York:American Society of Mechanical Engineers,2004.
    [18] LEA A.The oxidation of silicon carbide refractory materials [J].J Soc Glass Technol,1949,33(150):27-50.
    [19] EATON H E,LINSEY G D.Accelerated oxidation of SiC CMC’s by water vapor and protection via environmental barrier coating approach [J].Journal of the European Ceramic Society,2002,22(14-15):2741-2747.
    [20] ROBINSON R C,SMIALEK J L.SiC recession caused by SiO2 scale volatility under combustion conditions:I,experimental results and empirical model [J].Journal of The American Ceramic Society,1999,82(7):1817-1825.
    [21] TAN X,LIU W,CAO L,et al.Oxidation behavior of a 2D-SiCf/BN/SiBCN composite at 1350-1650℃ in air [J].Materials and Corrosion,2018,69(9):1227-1236.
    [22] JACOBSON N S,OPILA E J,LEE K N.Oxidation and corrosion of ceramics and ceramic matrix composites [J].Current Opinion in Solid State and Materials Science,2001,5(4):301-309.
    [23] LEE K N.Key durability issues with mullite-based environmental barrier coatings for Si-based ceramics;proceedings of the ASME 1999 international gas turbine and aeroengine congress and exhibition[C].New york:American Society of Mechanical Engineers,1999.
    [24] 黄璇璇,郭双全,姚改成,等.航空发动机 SiC/SiC复合材料环境障碍涂层研究进展 [J].航空维修与工程,2017(2):28-31.
    [25] FEDERER J.Alumina base coatings for protection of SiC ceramics [J].Journal of materials engineering,1990,12(2):141-149.
    [26] VAN ROODE M,PRICE J R,STALA C.Ceramic oxide coatings for the corrosion protection of silicon carbide;proceedings of the ASME 1991 international gas turbine and aeroengine congress and exposition[C].New york:American Society of Mechanical Engineers,1991.
    [27] LEE K N,MILLER R A,JACOBSON N S.New generation of plasma-sprayed mullite coatings on silicon carbide [J].Journal of the American Ceramic Society,1995,78(3):705-710.
    [28] LEE K N,FOX D S,ELDRIDGE J I,et al.Upper temperature limit of environmental barrier coatings based on mullite and BSAS [J].Journal of the American Ceramic Society,2003,86(8):1299-1306.
    [29] LEE K N.Current status of environmental barrier coatings for Si-based ceramics [J].Surface and Coatings Technology,2000,133:1-7.
    [30] COJOCARU C,KRUGER S,MOREAU C,et al.Elastic modulus evolution and behavior of Si/Mullite/BSAS-based environmental barrier coatings exposed to high temperature in water vapor environment [J].Journal of Thermal Spray Technology,2011,20(1-2):92-99.
    [31] VAN ROODE M,PRICE J,KIMMEL J,et al.Ceramic matrix composite combustor liners:a summary of field evaluations [J].Journal of Engineering for Gas Turbines and Power,2007,129(1):21-30.
    [32] ZHU D,BANSAL N P,MILLER R A.Thermal conductivity and stability of HfO2-Y2O3 and La2Zr2O7 evaluated for 1650 ℃ thermal/environmental barrier coating applications;proceedings of the proceedings of the 105th annual meeting and exposition of the american ceramic society [C].Nashville:The American Ceramic Society,2003.
    [33] LEE K N,FOX D S,BANSAL N P.Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics [J].Journal of the European Ceramic Society,2005,25(10):1705-1715.
    [34] JIANG F,CHENG L,WANG Y.Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium-aluminosilicate attack [J].Ceramics International,2017,43(12):9019-9023.
    [35] SPITSBERG I,STEIBEL J.Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications [J].International Journal of Applied Ceramic Technology,2004,1(4):291-301.
    [36] ZHU D,MILLER R A.Hafnia-based materials developed for advanced thermal/environmental barrier coating applications [J].NASA,2004,1(1):1-10.
    [37] ZHU D,MILLER R A.Multi-functionally graded environmental barrier coatings for Si-based ceramic components [J].Provisional Patent Application,2005,60(712):605.
    [38] ZHU D.NASA’s advanced environmental barrier coatings development for SiC/SiC Ceramic matrix composites:understanding CMAS degradations and resistance [J].NASA,2014,1(1):1-10.
    [39] COSTA G,ZHU D.High Temperature Degradation of advanced thermal and environmental barrier coatings (TEBCs) by CaO-MgO-Al2O3-SiO2 (CMAS) [J].NASA,2017,1(1):1-10.
    [40] ZHU D,HURST J B.Advanced high temperature and fatigue resistant environmental barrier coating bond coat systems for SiC/SiC ceramic matrix composites:US,13/923,450 [P/OL].2013.
    [41] ZHU D,HARDER B,HURST J B,et al.Development of advanced environmental barrier coatings for SiC/SiC ceramic Matrix composites:Path toward 2700 F temperature capability and beyond [J].NASA,2017,1(1):1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700