用户名: 密码: 验证码:
高含硫气藏海相碳酸盐岩高温高压水岩反应实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment of the water-rock reaction for the marine carbonate under high temperature and high pressure in high-sulfur gas reservoir
  • 作者:邹高峰 ; 郭肖 ; 朱争 ; 苏明 ; 张砚 ; 高涛
  • 英文作者:ZOU Gaofeng;GUO Xiao;ZHU Zheng;SU Ming;ZHANG Yan;GAO Tao;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University;Research Institute of Shanxi Yanchang Petroleum (Group) Company Ltd.;Notrhwest Sichuan Gas Field of PetroChina Southwest Oil & Gas Field Company;
  • 关键词:高含硫气藏 ; 酸性气体 ; CO2 ; H2S ; 海相碳酸盐岩 ; 水岩反应 ; 元坝气田 ; 川东北地区
  • 英文关键词:high-sulfur gas reservoir;;acid gas;;CO2;;H2S;;marine carbonate;;water-rock chemical reaction;;Yuanba Gas Field;;Northeast Sichuan
  • 中文刊名:DQSK
  • 英文刊名:Petroleum Geology & Oilfield Development in Daqing
  • 机构:西南石油大学油气藏地质及开发工程国家重点实验室;陕西延长石油(集团)有限责任公司研究院;中国石油西南油气田分公司川西北气矿;
  • 出版日期:2019-02-01
  • 出版单位:大庆石油地质与开发
  • 年:2019
  • 期:v.38;No.191
  • 基金:国家科技重大专项子课题“复杂生物礁气藏精细数值模拟”(2016ZX05017-005-005)
  • 语种:中文;
  • 页:DQSK201901005
  • 页数:8
  • CN:01
  • ISSN:23-1286/TE
  • 分类号:37-44
摘要
为研究川东北地区元坝气田高含硫气藏中酸性气体对海相碳酸盐岩储层物性的影响,利用取样的海相碳酸盐岩岩心,通入不同配比的酸性气体(H2S或CO_2),模拟地层温度(121℃)、地层压力(50 MPa)条件,开展酸性气体下的水岩反应实验。实验表明:高温高压水岩反应后,岩心相对分子质量总体呈现减小的趋势,质量改变率最高达到7. 41%;储层岩心渗透率和孔隙度总体呈现增长趋势,渗透率增长幅度最高达644. 99%,孔隙度增长幅度最高达53. 84%;不同酸性气体质量浓度和气体组成对岩心矿物溶蚀效果不一致,单一酸性气体比混合酸性气体的溶蚀效果好,H_2S气体比CO_2气体对储层岩石的溶蚀效果好;酸性气体在地层高温高压环境下对海相碳酸盐岩具有明显的酸蚀改造作用,水岩反应后酸性气体不仅能溶蚀矿物,造成孔隙度、渗透率的增大,还存在矿物溶蚀颗粒运移沉淀堵塞部分岩石孔隙喉道的现象。
        In order to study the influence of the acid gas on the physical properties of the marine carbonate in the high-sulfur gas reservoir in Yuanba Gas Field of Northeast Sichuan,by means of the sampled marine carbonate core,the water-rock reaction experiment of the acid gas was conducted under the conditions of different prepared ratios of the acid gases( H_2 S or CO_2),simulating strata temperature( 121 ℃) and formation pressure( 50 MPa).The experiment shows that after the high-temperature and high-pressure water-rock reaction,the relative molecular mass of the core presents a decreasing trend in a whole,the changed ratio of the mass can reach 7. 41% to the most; while the porosity and permeability generally show an increasing trend,the increased ratio of the permeability can up to 644. 99%,and that of the porosity can reach 53. 84%; different concentrations and compositions of the acidic gas may lead to inconsistent dissolved effects for the minerals,while the corresponding effect of the single acid gas is better than that of the mixed acidic gases,the corroded effect of the acidic gas H_2 S to the reservoir rock isbetter than that of the CO_2; the acid gases indeed have obvious acid corrosion and reformation to the marine carbonate rock under the conditions of high temperature and high pressure in the strata,the acid gases after the water-rock reaction can not only dissolve the minerals and enlarge the porosity and permeability,but also make the dissolved mineral particles migrated and subsided and finally blocked the partial pore throats of the rocks.
引文
[1]罗平,张静,刘伟,等.中国海相碳酸盐岩油气储层基本特征[J].地学前缘,2008,15(1):36-50.LUO Ping,ZHANG Jing,LIU Wei,et al. Basic characteristics of marine carbonate reservoirs in China[J]. Earth Science Frontiers,2008,15(1):36-50.
    [2]何治亮,金晓辉,沃玉进,等.中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J].中国石油勘探,2016,20(1):3-14.HE ZhiLiang,JIN Xiaohui,WO Yujin,et al. Characteristics of hydrocarbon formation and exploration field of marine carbonate reservoirs in China[J]. China Petroleum Exploration,2016,20(1):3-14.
    [3]卢曦.塔里木盆地古城地区下古生界碳酸盐岩成岩作用及储层孔隙特征[J].大庆石油地质与开发, 2016, 35(4):15-21.LU Xi. Diagenesis and reservoir pore characteristics of carbonate rocks in lower palaeozoic in ancient city of Tarim Basin[J]. Petroleum Geology&Oilfield Development in Daqing, 2016, 35(4):15-21.
    [4]胡东风.普光气田与元坝气田礁滩储层特征的差异性及其成因[J].天然气工业,2011,31(10):17-21.HU Dongfeng. Differences in reef bank reservoir features between Puguang and Yuanba Gas Fields and their reasons[J]. Natural Gas Industry,2011,31(10):17-21.
    [5]蔡春芳.沉积盆地流体—岩石相互作用研究的现状[J].地球科学进展,1996,11(6):575-579.CAI Chunfang. Current situation of fluid-rock interaction in sedimentary basins[J]. Advance in Earth Sciences,1996,11(6):575-579.
    [6]张枝焕,胡文瑄,曾溅辉,等.东营凹陷下第三系流体—岩石相互作用研究[J].沉积学报,2000,18(4):560-566.ZHANG Zhihuan,HU Wenxuan,ZENG Jianhui,et al. Study on fluid-rock interactions in Eogene Formation in Dongying Depression,Bohai Gulf Basin[J]. Acta Sedimentologica Sinica,2000,18(4):560-566.
    [7]王琪,史基安,薛莲花,等.碎屑储集岩成岩演化过程中流体—岩石相互作用特征:以塔里木盆地西南坳陷地区为例[J].沉积学报,1999,17(4):87-93.WANG Qi,SHI Ji’an,XUE Lianhua,et al. Fluid-rock interaction during clastic reservoir diagenesis:A case study of the southwest depression of Tarim Basin[J]. Acta Sedimentologica Sinica,1999,17(4):87-93.
    [8]杨冰.水—岩相互作用对储层渗透性影响的数值模拟研究[D].长春:吉林大学,2015.YANG Bing. A numerical simulation study on the effect of waterrock interaction on reservoir permeability[D]. Changchun:Jilin University,2015.
    [9] WIGAND M,CAREY J W,SCHütt H,et al. Geochemical effects of CO2sequestration in sandstones under simulated in situ conditions of deep saline aquifers[J]. Applied Geochemistry,2008,23(9):2735-2745.
    [10] KETZER J M,IGLESIAS R,EINLOFT S,et al. Water-rock-CO2interactions in saline aquifers aimed for carbon dioxide storage:Experimental and numerical modeling studies of the Rio Bonito Formation(Permian),Southern Brazil[J]. Applied Geochemistry,2009,24(5):760-767.
    [11] FISCHER S,ZEMKE K,LIEBSCHER A,et al. Petrophysical and petrochemical effects of long-term CO2-exposure experiments on brine-saturated reservoir sandstone[J]. Energy Procedia,2011,4(1):4487-4494.
    [12] WANDREY M,PELLIZARI L,ZETTLITZER M,et al. Microbial community and inorganic fluid analysis during CO2,storage within the frame of CO2sink-long-term experiments under in situ conditions[J]. Energy Procedia,2011,4(22):3651-3657.
    [13] YU Zhichao,LIU Li,YANG Siyu,et al. An experimental study of CO2-brine-rock interaction at in situ,pressure-temperature reservoir conditions[J]. Chemical Geology, 2017, 18(7):2526-2542.
    [14] BACHU S. Sequestration of CO2in geological media:Criteria and approach for site selection in response to climate change[J]. Energy Conversion&Management,2000,41(9):953-970.
    [15]于志超,杨思玉,刘立,等.饱和CO2地层水驱过程中的水—岩相互作用实验[J].石油学报,2012,33(6):1032-1042.YU Zhichao,YANG Siyu,LIU Li,et al. Water-rock interaction experiment during water flooding in saturated CO2formation[J].Acta Petrolei Sinica,2012,33(6):1032-1042.
    [16]于淼,刘立,杨会东,等. CO2驱油后的矿物捕获:以松辽盆地南部为例[J].断块油气田,2015,22(1):102-107.YU Miao,LIU Li,YANG Huidong,et al. Mineral capture after CO2flooding:A case study of Southern Songliao Basin[J]. Fault-Block Oil&Gas Field,2015,22(1):102-107.
    [17]汤瑞佳,黄春霞,余华贵,等.延长油田CO2—岩石—地层水相互作用规律[J].油田化学,2015,32(4):515-519.TANG Ruijia,HUANG Chunxia,YU Huagui,et al. The function law of CO2-rock-formation water interaction in Yanchang Oilfield[J]. Oilfield Chemistry,2015,32(4):515-519.
    [18] Egermann P,Lenormand R. A new methodology to evaluate the impact of local heterogeneity on petro-physical parameters(Kr,Pc)applied to carbonate rocks[J]. Petro-physics,2005,46(5):335-345.
    [19]马永生,郭彤楼,朱光有,等.硫化氢对碳酸盐储层溶蚀改造作用的模拟实验证据:以川东飞仙关组为例[J].科学通报,2007,52(增刊1):136-141.MA Yongsheng,GUO Tonglou,ZHU Guangyou,et al. Simulated experimental evidence of hydrogen sulfide on the dissolution and alteration of carbonate reservoirs—A case study of Feixianguan Formation in East Sichuan province[J]. Chinese Science Bulletin,2007,52(S1):136-141.
    [20] MARCON V,KASZUBA J. Trace metal mobilization in an experimental carbon sequestration scenario[J]. Procedia Earth and Planetary Science,2013,7:554-557.
    [21]王力娟.含CO2流体—泥岩相互作用的特征与机制[D].长春:吉林大学,2013.WANG Lijuan. Characteristics and mechanism of fluids containing CO2and mudstone interaction[D]. Changchun:Jilin University,2013.
    [22]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报,2002,21(4):526-531.TANG Liansheng,ZHANG Pengcheng,WANG Sijing. Experimental study on macroscopic mechanical effects of water-rock chemical interaction[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(4):526-531.
    [23]黄伟,周文斌,陈鹏,等.水-岩化学作用对岩石的力学效应的研究[J].西部探矿工程,2006,18(1):122-125.HUANG Wei,ZHOU Wenbin,CHEN Peng,et al. Study on the mechanical effects of water-rock chemical interaction on rocks[J]. West-China Exploration Engineering, 2006, 18(1):122-125.
    [24]肖恩照,隋明园,Khalid Latif,等.微生物白云岩形成机制研究进展与存在问题[J].大庆石油地质与开发,2017,36(2):26-32.XIAO Enzhao, SUI Mingyuan, LATIF K, et al. Research progress and existing problems on the formation mechanism of microbial dolomite[J]. Petroleum Geology&Oilfield Development in Daqing,2017,36(2):26-32.
    [25]高建,杨思玉,李金龙,等.吉林大情字井油田CO2注入井吸气能力主控因素[J].大庆石油地质与开发,2016,35(5):128-131.GAO Jian, YANG Siyu, LI Jinlong, et al. Main controlling factors of CO2injection capacity of Jilin in Daqingzi well Oilfield[J]. Petroleum Geology&Oilfield Development in Daqing,2016,35(5):128-131.
    [26]计曙东,王学军,刘玉华,等.东濮凹陷胡状集—庆祖集油田地层水特征及其石油地质意义[J].油气地质与采收率,2013,20(5):43-47.JI Shudong,WANG Xuejun,LIU Yuhua,et al. The water characteristics and petroleum geological significance of HuzhuangjiQingzuji Oilfield in Dongpu depression[J]. Petroleum Geology and Recovery Efficiency,2013,20(5):43-47.
    [27]杨学锋,郭平,唐大卿,等.高含硫气体在地层水中溶解规律实验研究[J].特种油气藏,2008,15(5):84-86.YANG Xuefeng,GUO Ping,TANG Daqing,et al. Experimental study on dissolution law of high sulfur gas in formation water[J].Special Oil&Gas Reservoirs,2008,15(5):84-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700