用户名: 密码: 验证码:
中国散裂中子源在大气中子单粒子效应研究中的应用评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application and evaluation of Chinese spallation neutron source in single-event effects testing
  • 作者:王勋 ; 张凤祁 ; 陈伟 ; 郭晓强 ; 丁李利 ; 罗尹虹
  • 英文作者:Wang Xun;Zhang Feng-Qi;Chen Wei;Guo Xiao-Qiang;Ding Li-Li;Luo Yin-Hong;State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology;
  • 关键词:大气中子 ; 单粒子效应 ; 中国散裂中子源 ; 反角白光中子源
  • 英文关键词:atmospheric neutron;;single event effect;;Chinese spallation neutron source;;CSNS back-n
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:西北核技术研究所强脉冲辐射环境模拟与效应国家重点实验室;
  • 出版日期:2019-03-08
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11690040,11690043,61634008)资助的课题~~
  • 语种:中文;
  • 页:WLXB201905005
  • 页数:10
  • CN:05
  • ISSN:11-1958/O4
  • 分类号:44-53
摘要
由于缺少可用的散裂中子源,多年来我国在大气中子单粒子效应方面主要依靠模拟仿真和单能中子试验的方式开展研究.随着中国散裂中子源(CSNS)通过国家验收,基于CSNS开展大气中子单粒子效应研究成为可能.本文利用CSNS反角白光中子源开展多款静态随机存取存储器器件的中子单粒子效应试验,并与早期开展的高原大气试验结果进行对比,对CSNS在大气中子单粒子效应研究中的应用进行评估.结果表明,相同器件在CSNS反角白光中子源测得的单粒子翻转截面小于大气试验的结果,且不同器件的翻转截面与特征尺寸没有明显的单调关系.分析得到前者由于CSNS反角白光中子谱偏软;后者由于特征尺寸降低导致的临界电荷变小和灵敏体积变小对截面的贡献是竞争关系.针对截面偏小的问题,根据能谱差异分析了中子能量阈值对器件翻转截面的影响,发现能量阈值取12MeV进行计算时,器件在CSNS反角白光中子源和高原大气中子环境中能够得到较一致的截面.研究结果表明CSNS反角白光中子源能够用于加速大气中子单粒子效应试验.考虑到CSNS的运行功率正在逐步提高,且多条规划中的白光中子束线与大气中子能谱更为接近,预期未来CSNS将能更好地应用于大气中子单粒子效应研究.
        Due to the lack of available spallation neutron source,the atmospheric neutron single event effect(SEE)in China were studied mainly by means of simulation and single energy neutron test.Since the Chinese spallation neutron source(CSNS)passed the national acceptance,it has become possible to carry out the research on atmospheric neutron SEE by using the CSNS.In this paper,the neutron SEE experiments of 3 kinds of SRAMs with different feature sizes are carried out for the first time by using the CSNS back-n.The application of CSNS back-n in the study of atmospheric neutron SEE is evaluated by comparing with the results of the earlier plateau experiment.The results show that the cross section of the single event upset is smaller than that of the plateau test,and the cross sections of different devices have no obvious monotonic relationship with feature size.The reason for the former result is that the energy spectrum of CSNS back-n is slightly softer than that of the atmospheric neutron.The reason for the second result is that small feature size means small critical charge and small sensitive volume,and these two factors compete with each other when they make the contribution to the cross section.According to the difference in energy spectrum and cross section among the SRAM devices,a correction factor is proposed to correct the test results based on CSNS back-n.For the difference in energy spectrum,different energy thresholds will produce different ratios between the cross sections by using CSNS back-n and atmospheric neutron.The neutrons of CSNS back-n are mainly concentrated around 1MeV,which is close to the energy threshold of general SRAM devices.Thus,inaccurate energy threshold estimation will introduce a large error into the cross section of SEU.Thus,the relation between the correction factor and the energy threshold is analyzed.If 12MeV is selected as the energy threshold to calculate the cross section,more consistent results could be obtained for our DUT in CSNS back-n and atmospheric neutron environment.In a word,the results show that the CSNS back-n can be used to speed up the atmospheric neutron SEE test,but the result should be corrected to evaluate the threat from atmospheric neutron.Fortunately,with the continuous increase of CSNS operating power,the neutron flux and the accelerated factor of CSNS will increase synchronously.Besides,other 3 white light neutron beams are planned in the CSNS project,the planned energy spectra are closer to those of atmospheric neutron.It is expected that the CSNS will be better applied to the study of atmospheric neutron SEE.
引文
[1]Abe S,Watanabe Y 2014 IEEE Trans.Nucl.Sci.61 3519
    [2]Normand E 1996 IEEE Trans.Nucl.Sci.43 461
    [3]Hubert G,Bezerra F,Nicot J M,Artola L,Cheminet A,Valdivia J N,Mouret J M,Meyer J R,Cocquerez P 2014IEEE Trans.Nucl.Sci.61 1703
    [4]Normand E 1996 IEEE Trans.Nucl.Sci.43 2742
    [5]Quinn H,Graham P,Manuzzato A,Fairbanks T,Dallmann N,DesGeorges R 2010 IEEE Trans.Nucl.Sci.57 3547
    [6]Dyer C,Hands A,Ryden K,Lei F 2018 IEEE Trans.Nucl.Sci.65 432
    [7]Taber A,Normand E 1993 IEEE Trans.Nucl.Sci.40 120
    [8]Olsen J,Becher P E,Fynbo P B,Raaby P,Schultz J 1993IEEE Trans.Nucl.Sci.40 74
    [9]Normand E,Baker T J 1993 IEEE Trans.Nucl.Sci.40 1484
    [10]Normand E 2001 IEEE Trans.Nucl.Sci.48 1996
    [11]Flament O,Baggio J,D’hose C,Gasiot G,Leray J L 2004IEEE Trans.Nucl.Sci.51 2908
    [12]Lambert D,Baggio J,Hubert G 2006 IEEE Trans.Nucl.Sci.53 1890
    [13]Hands A,Morris P,Dyer C,Ryden K,Truscott P 2011 IEEETrans.Nucl.Sci.58 952
    [14]Autran J L,Roche P,Borel J,Sudre C,Karine C,Munteanu D,Parrassin T,Gasiot G,Schoellkopf J P 2007 IEEE Trans.Nucl.Sci.54 1002
    [15]Takashi N,Mamoru B,Eishi I(translated by Chen W,Shi SZ,Song Z H,Wang C H)2015 Terrestrial Neutron-Induced Soft Errors in Advanced Memory Devices(Beijing:National Defense Industry Press)pp 94-119(in Chinese)[中村刚史,马场守,伊部英治著(陈伟,石绍柱,宋朝晖,王晨辉译)2015大气中子在先进存储器件中引起的软错误(北京:国防工业出版社)第94-119页]
    [16]Dyer C S,Clucas S N,Sanderson C,Frydland A D,Green RT 2004 IEEE Trans.Nucl.Sci.51 2817
    [17]Weulersse C,Guibbaud N,Beltrando A L,Galinat J,Beltrando C,Miller F,Trochet P,Alexandrescu D 2017 IEEETrans.Nucl.Sci.64 2268
    [18]Zhang L Y,Ni W J,Jing H T,Wang X Q 2018 Mod.Appl.Phys.9 010201(in Chinese)[张利英,倪伟俊,敬罕涛,王相綦2018现代应用物理9 010201]
    [19]Qi L,Zhou Y P 2018 Aero.Sci.Tech.29 07(in Chinese)[綦蕾,周燕佩2018航空科学技术29 07]
    [20]Wang Q Y,Liu Y F,Chen Y,Bai H,Yang H 2011 Aero.Sci.Tech.4 34(in Chinese)[王群勇,刘燕芳,陈宇,白桦,阳辉2011航空科学技术4 34]
    [21]Xue H H,Wang Q Y,Chen D M,Chen Y,Yang H,Li H J2015 J.Beijing.Univ.Aero.Astron.41 1894(in Chinese)[薛海红,王群勇,陈冬梅,陈宇,阳辉,李红军2015北京航空航天大学学报41 1894]
    [22]Zhou X 2018 Infor.Comm.4 79(in Chinese)[周啸2018信息通信4 79]
    [23]Zhang H,Wang S G,Chen W,Yang S C 2015 Nucl.Tech.38120501(in Chinese)[张欢,王思广,陈伟,杨善潮2015核技术38 120501]
    [24]Guo X Q,Guo H X,Wang G Z,Lin D S,Chen W,Bai X Y,Yang S C,Liu Y 2010 Atom.Ener.Sci.Tech.44 362(in Chinese)[郭晓强,郭红霞,王桂珍,林东生,陈伟,白小燕,杨善潮,刘岩2010原子能科学技术44 362]
    [25]Yu Q Z,Hu Z L,Yin W,Liang T J 2014 Sci.Sin.:Phys.Mech.Astron.44 479(in Chinese)[于全芝,胡志良,殷雯,梁天骄2014中国科学:物理学力学天文学44 479]
    [26]Chen D M,Sun X P,Zhong Z Y,Feng G Q,Bai H,Yang H,Di T 2018 Aero.Sci.Tech.29 67(in Chinese)[陈冬梅,孙旭朋,钟征宇,封国强,白桦,阳辉,底桐2018航空科学技术2967]
    [27]Fan H,Guo G,Shen D J,Liu J C,Chen H T,Zhao F,Chen Q,He A L,Shi S T,Hui N,Cai L,Wang G L 2015 Atom.Ener.Sci.Tech.49 171(in Chinese)[范辉,郭刚,沈东军,刘建成,陈红涛,赵芳,陈泉,何安林,史淑廷,惠宁,蔡莉,王贵良2015原子能科学技术49 171]
    [28]Ni W,Jing H,Zhang L,Ou L 2018 Radiat.Phys.Chem.15243
    [29]Jedec 2001 JESD89-measurement and Reporting of alpha particles and terrestrial cosmic ray-induced soft errors in semiconductor devices
    [30]IEC 2006 Process management for avionics-atmospheric radiation effects,part 1:Accommodation of atmospheric radiation effects via single event effects within avionic electronic equip-ment:IEC 62396-1
    [31]Guo X Q 2009 M.S.Thesis(Xi’an:Northwest Institute of Nuclear Technology)(in Chinese)[郭晓强2009硕士学位论文(西安:西北核技术研究所)]
    [32]Yang S C,Qi C,Bai X Y,Li R B,Wang C H,Li J L,Jin XM,Liu Y 2018 The 3th Chinese Conferance on Radiation Physics p77(in Chinese)[杨善超,齐超,白晓燕,李瑞斌,王晨辉,李俊霖,金晓明,刘岩2018第三届全国辐射物理学术交流会第77页]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700