用户名: 密码: 验证码:
深水浅层非成岩天然气水合物固态流化试采技术研究及进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area
  • 作者:周守为 ; 陈伟 ; 李清平 ; 周建良 ; 施和生
  • 英文作者:ZHOU Shouwei;CHEN Wei;LI Qingping;ZHOU Jianliang;SHI Hesheng;CNOOC;CNOOC Research Institute;Exploration Department of CNOOC Ltd.;
  • 关键词:深水 ; 浅层 ; 非成岩 ; 天然气水合物 ; 固态流化 ; 试采方案 ; 试采作业
  • 英文关键词:deep water;;shallow layer;;non-diagenetic;;natural gas hydrate;;solid fluidization;;well testing and production scheme;;well testing and production operation
  • 中文刊名:ZHSD
  • 英文刊名:China Offshore Oil and Gas
  • 机构:中国海洋石油总公司;中海油研究总院;中海石油(中国)有限公司勘探部;
  • 出版日期:2017-07-26 11:45
  • 出版单位:中国海上油气
  • 年:2017
  • 期:v.29
  • 基金:国家重点研发项目“海洋天然气水合物试采技术和工艺(编号:2016YFC0304000)”部分研究成果
  • 语种:中文;
  • 页:ZHSD201704001
  • 页数:8
  • CN:04
  • ISSN:11-5339/TE
  • 分类号:5-12
摘要
基于我国海域天然气水合物钻探取样储层具有埋深浅、无致密盖层、非成岩、弱胶结、易于碎化等特点,提出了针对深水浅层非成岩天然气水合物固态流化试采方案,其核心思想是将深水浅层非成岩天然气水合物矿体通过机械破碎流化转移到密闭的气、液、固多相举升管道内,利用举升过程中海水温度升高、静水压力降低的自然规律使水合物逐步气化,变非成岩天然气水合物分解过程的不可控为可控,实现深水浅层天然气水合物安全试采;其工程实施策略为目标勘探确定井位、随钻测井证实水合物层位、钻探取样及分析作为试采实施依据,即在钻探取样获取岩心后确定水合物有效层位,依托深水工程勘察船、采用无隔水管钻杆钻进至水合物层后固井并建立井口,采用自主的井下喷射工艺使含水合物沉积物在举升过程中自然分解,利用密度差实现部分砂回填,其余气、液、固流化物返回地面测试流程,经过高效分离、气体储集、放喷等技术实现快速点火测试。2017年5月,中国海油在南海北部荔湾3站位依托深水工程勘察船"海洋石油708",利用完全自主研制技术、工艺和装备,在水深1 310 m、水合物矿体埋深117~196 m处,在全球首次成功实施海洋浅层非成岩天然气水合物固态流化试采作业,标志着我国已在具有自主知识产权的天然气水合物勘探开发关键技术上取得历史性突破。
        Based on the characteristics of shallow,non-dense cover,non-diagenesis,weak cementation and easy fragmentation of natural gas hydrate drilling reservoirs in China,a solid fluidization well testing and production scheme for deep water shallow non-diagenetic gas hydrate is proposed.The core idea is to transfer the deep-water non-diagenetic natural gas hydrate ore body through mechanical crushing fluidization into a closed gas-liquid-solid multi-phase lifting pipeline,using the natural law of the sea water tem-perature rise and the hydrostatic pressure decrease during the lifting process hydrate gradually gasification,non-diagenetic hydrate decomposition process is not controlled to control,to achieve deep water gas hydrate safety test.The engineering implementation strategy is the target exploration to determine the well location,while drilling the wells to confirm the hydrate level,drilling sampling and analysis as the basis for the implementation of the test,that is,after drilling the core to determine the effective hydrate wells,then establishment the wellbore,the use of downhole jet process so that the hydrate deposits in the process of lifting part of the natural decomposition of the use of density difference to achieve part of the sand backfill,the remaining gas-liquid-solid fluid to return to the ground test process,through efficient separation,gas storage,discharge technology to achieve rapid ignition test.In May 2017,CNOOC relied on the deep water engineering survey vessel HYSY708 at the station of LW3 in the northern part of the South China Sea.Using fully self-developed technology,process and equipment,at the depth of 1 310 m and the depth of hydrate ore body was 117~196 m,the world's first successful implementation of shallow non-diagenetic hydrate solid fluidization well testing and production in ocean water,marking China's has made a historic breakthrough in the key technology of natural gas hydrate exploration and development with independent intellectual property rights.
引文
[1]YE Y G,LIU C L.Natural gas hydrate:experimental techniques and their applications[M].New York:Springer,2013.
    [2]POOLADI-DARCISH M.Gas production from hydrate reservoirs and its modeling[J].Journal of Petroleum Technology,2004,56(6):65-71.
    [3]AJAY P M,ULFERT C K.An industry perspective on the state of the art of hydrate management[C].Norway:Proceedings of the Fifth International Conference on Gas Hydrates,2005.
    [4]KARAASLAN U,PARLAKTUNA M.PEO:a new hydrate inhibitor polymer[J].Energy&Fuels,2002,16(6):1387-1391.
    [5]FREER E M,SLOAN Jr E D S.An engineering approach to kinetic inhibitor design using molecular dynamics simulations[J].Annals of the New York Academy of Sciences,2000,912(1):651-657.
    [6]MOON C,TAYLOR P C,RODGER P M.Clathrate nucleation and inhibition from a molecular perspective[J].Canadian Journal of Physics,2003,81(7):451-457.
    [7]许红,黄君权,夏斌,等.最新国际天然气水合物研究现状与资源潜力评估(上)[J].天然气工业,2005,25(5):21-25.XU Hong,HUANG Junquan,XIA Bin,et al.Current research situation and resource potential evaluation of natural gas hydrate in the world[J].Natural Gas Industry,2005,25(5):21-25.
    [8]周守为,李清平.海上工程设计指南:深水篇天然气水合物[M].北京:石油工业出版社,2010:264-279.
    [9]郭平.油气藏流体相态理论与应用[M].北京:石油工业出版社,2004.
    [10]孙长宇,黄强,陈光进.气体水合物形成的热力学与动力学研究进展[J].化工学报,2006,57(5):1031-1039.SUN Changyu,HUANG Qiang,CHEN Guangjin.Progress of thermodynamics and kinetics of gas hydrate formation[J].Journal of Chemical Industry and Engineering(China),2006,57(5):1031-1039.
    [11]周守为,李清平,陈伟,等.天然气水合物开采三维实验模拟技术研究[J].中国海上油气,2016,28(2):1-9.DOI:10.11935/j.issn.1673-1506.2016.02.001.ZHOU Shouwei,LI Qingping,CHEN Wei,et al.Research on3D experiment technology of natural gas hydrate exploitation[J].China Offshore Oil and Gas,2016,28(2):1-9.DOI:10.11935/j.issn.1673-1506.2016.02.001.
    [12]周守为,陈伟,李清平.深水浅层天然气水合物固态流化绿色开采技术[J].中国海上油气,2014,26(5):1-7.ZHOU Shouwei,CHEN Wei,LI Qingping.The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water[J].China Offshore Oil and Gas,2014,26(5):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700