用户名: 密码: 验证码:
动物源细胞外基质中糖胺聚糖物质的检测方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Methods for detecting glycosaminoglycan in the extracellular matrix of animal cells
  • 作者:张伟 ; 陈俊霖 ; 胡康
  • 英文作者:Zhang Wei;Chen Junlin;Hu Kang;Guanhao Biotech Co., Ltd., National Engineering Laboratory for Regenerative Medical Implantable Devices;Guangzhou Keyue Biotech Co., Ltd.;
  • 关键词:细胞外基质 ; 糖胺聚糖 ; 临床应用 ; 检测方法 ; 生物学特性 ; 制作工艺 ; 二甲基亚甲基蓝检测 ; 高效液相色谱法
  • 英文关键词:extracellular matrix;;glycosaminoglycan;;clinical application;;detection;;biological characteristics;;production process;;dimethyl methylene blue detection;;high performance liquid chromatography
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:冠昊生物科技股份有限公司再生型医用植入器械国家工程实验室;广州科越生物科技有限公司;
  • 出版日期:2019-07-19
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.887
  • 基金:国家重点研发计划资助(2016YFC1103200)~~
  • 语种:中文;
  • 页:XDKF201930020
  • 页数:7
  • CN:30
  • ISSN:21-1581/R
  • 分类号:111-117
摘要
背景:作为每个组织和器官中的细胞分泌产物,细胞外基质凭借其独一无二的生物学特性成为了临床应用中一种独特的再生型生物材料。糖胺聚糖作为细胞外基质中的重要活性物质之一,具有诸多优良的生物学特性。目的:整理总结近年来国内外对细胞外基质中糖胺聚糖检测方法的研究进展,并对各方法进行了对比,为优化细胞外基质糖胺聚糖检测方法提供帮助和方法参考。方法:通过输入关键词"糖胺聚糖检测、细胞外基质、determination methods of glycosaminoglycan、Animal-derived extracellular matrix",从PubMed、知网等文献搜索引擎共搜索出2 037篇相关文献,筛选并整理63篇文献,总结出常见的糖胺聚糖检测方法。根据阅读文献时总结的思路,提出基于现有提取检测糖胺聚糖方法的改进方案,并设计对比实验验证。结果与结论:糖胺聚糖对动物源细胞外基质生物学性能起着至关重要的作用,可赋予细胞外基质材料及产品优异的生物活性与促修复功能。检测材料中糖胺聚糖含量可指导细胞外基质材料的工艺优化,因此糖胺聚糖检测方法至关重要。目前糖胺聚糖的检测方法主要有高效液相色谱法、糖醛酸分析法、乙醣胺定量分析法与二甲基亚甲基蓝检测法,以上方法均存在一定的局限性。基于已有的研究成果,针对二甲基亚甲基蓝检测法中的样本消化、糖胺聚糖提取等步骤做了改进,大幅度提升了检测结果的准确度,为其他糖胺聚糖检测方法提供了思路和参考。
        BACKGROUND: As a cell secretory product in every tissue and organ, the extracellular matrix, by virtue of its unique biological properties, has become a unique regenerative biomaterial in clinical applications. As one of the important active substances in the extracellular matrix, glycosaminoglycan has remarkable biological characteristics.OBJECTIVE: To review the research progress of the detection methods of glycosaminoglycan in extracellular matrix at home and abroad and compare these methods to provide reference information to optimize the methods of detecting glycosaminoglycan in the extracellular matrix.METHODS: A total of 2 037 publications were retrieved by searching CNKI database using search terms "glycosaminoglycan", "extracellular matrix" and by searching Pub Med using search terms "determination methods of glycosaminoglycan" "Animal-derived extracellular matrix".Sixty-three literatures were screened and included in the final analysis. The common methods of detecting glycosaminoglycan were summarized. According to the ideas summarized during the literature review, the improved method for glycosaminoglycan extraction and detection was proposed and a comparative study was designed to validate the improved method.RESULTS AND CONCLUSION: Glycosaminoglycan plays a vital role in the biological properties of animal-derived extracellular matrix and can confer superior biological activity and prosthetic function to extracellular matrix materials and products. Detection of glycosaminoglycan content in the extracellular matrix material can help to optimize extracellular matrix material. Therefore, the method of detecting glycosaminoglycan content in the extracellular matrix is of great importance. The currently available methods of detecting glycosaminoglycan include high performance liquid chromatography, uronic acid analysis, quantitative analysis of acetaminophen, and dimethyl methylene blue detection. All of these methods have certain limitations. Based on the existing research results, we only improved the sample digestion and glycosaminoglycan extraction in dimethylmethylene blue detection method, which greatly increased the accuracy of the detection results. This provides ideas and insights for other glycosaminoglycan detection methods.
引文
[1] Sonbol HS.Extracellular Matrix Remodeling in Human Disease.J Microsc Ultrastruct.2018;6(3):123-128.
    [2] Mouw JK,Ou G,Weaver VM.Extracellular matrix assembly:a multiscale deconstruction. Nature Reviews.Mol Cell Biol.2014;15(12):771-785.
    [3] Hinderer S,Layland SL,Schenke-Layland K.ECM and ECM-like materials-biomaterials for applications in regenerative medicine and cancer therapy.Adv Drug Deliv Rev.2016;97:260-269.
    [4]姜龙,刘昶,薛松,等.生物补片的临床应用进展[J].现代生物医学进展,2015,15(8):1577-1581.
    [5] Dziki JL,Huleihel L,Scarritt ME,et al.Extracellular Matrix Bioscaffolds as Immunomodulatory Biomaterials.Tissue Eng Part A.2017;23(19-20):1152-1159.
    [6] Tracy LE,Minasian RA,Caterson EJ.Extracellular matrix and dermal fibroblast function in the healing wound.Adv Wound Care.2016;5(3):119-136.
    [7]聂玉胜,申英末.化学性医用胶固定生物补片在腹腔镜经腹腹膜前疝修补术中的应用[J].中华疝和腹壁外科杂志, 2017,11(3):168-170.
    [8] Mao AS,Mooney DJ.Regenerative medicine:Current therapies and future directions.Proc Natl Acad Sci U S A.2015;112(47):14452-14459.
    [9] Svystonyuk DA,Mewhort HEM,Fedak PWM.Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair.Front Cardiovasc Med. 2018;5:35.
    [10] Ghatak S, Maytin EV, Mack JA, et al. Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis. Int J Cell Biol. 2015; 1-20.
    [11]王亮,刘梅包,陈双.猪小肠黏膜下层脱细胞组织基质材料的制备与体内相容性的检验[J].中华疝和腹壁外科杂志(电子版), 2016,10(2):89-93.
    [12] Aquino RS, Park PW. Glycosaminoglycans and infection.Front Biosci(Landmark Edition)2016;21:1260-1277.
    [13] Hussey GS,Cramer MC,Badylak SF.Extracellular matrix bioscaffolds for building gastrointestinal tissue.Cell Mol Gastroenterol Hepatol.2018;5(1):1-13.
    [14] Yue B. Biology of the extracellular matrix:an overview.J Glaucoma.2014;23(8):S20-S23.
    [15] Bonnans C, Chou J, Werb Z.Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol.2014;15(12):786-801.
    [16] Poltavets V, Kochetkova M, Pitson SM,et al.The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity.Front Oncol.2018;8:431.
    [17] Sawicka KM,Seeliger M,Musaev T,et al Fibronectin Interaction and Enhancement of Growth Factors:Importance for Wound Healing.Adv Wound Care.2015;4(8):469.
    [18] Matsuo I,Kimura-Yoshida C.Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis.Philos Trans R Soc Lond B Biol Sci.2017;369:1-9.
    [19] Rohrs JA,Sulistio CD,Finley SD.Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue.NPJ Syst Biol Appl.2016;2:16030.
    [20] SergéA.The Molecular Architecture of Cell Adhesion:Dynamic Remodeling Revealed by Videonanoscopy.Front Cell Dev Biol.2016;4:36.
    [21] Maas SLN,Breakefield XO,Weaver AM.Extracellular Vesicles:Unique Intercellular Delivery Vehicles.Trends Cell Biol. 2017;27(3):172-188.
    [22] Kim Y,Ko H,Kwon IK,et al.Extracellular matrix revisited:roles in tissue engineering.Int Neurourol J.2016;20(Suppl 1):S23-29.
    [23] Lee EJ,Kasper FK,Mikos AG. Biomaterials for tissue engineering.Ann Biomed Eng.2014;42(2):323-337.
    [24] Porzionato A,Stocco E,Barbon S,et al.Tissue-engineered grafts from human decellularized extracellular Matrices:a systematic review and future perspectives.Int J Mol Sci. 2018;19:1-79.
    [25] Bonnans C,Chou J,Werb Z.Remodelling the extracellular matrix in development and disease. Nature Reviews.Mol Cell Biol.2014;15(12):786-801.
    [26] Shaheen NL,Kataria E,Antony J,et al.Extracellular matrix composition modulates angiosarcoma cell attachment and proliferation.Oncoscience.2017;4(11-12):178-188.
    [27] Boroumand S,Asadpour S,Akbarzadeh A,et al.Heart valve tissue engineering:an overview of heart valve decellularization processes.Regen Med.2018;13(1):41-54.
    [28] Murdock K,Martin C,Sun W.Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation.J Mech Behav Biomed Mater. 2018;77:148-156.
    [29] Chen FM,Liu X.Advancing biomaterials of human origin for tissue engineering.Prog Polym Sci.2016;53:86-168.
    [30] Gilpin A,Yang Y.Decellularization strategies for regenerative medicine:from processing techniques to applications.Biomed Res Int.2017;2017:9831534.
    [31]杨凯,刘昶.生物补片的临床应用及研究进展[J].医学综述, 2015,21(11):1951-1953.
    [32] Prydz K.Determinants of Glycosaminoglycan(GAG)Structure.Biomolecules, 2015;5(3):2003-2022.
    [33] Liu G,Ding Z,Yuan Q,et al.Multi-layered hydrogels for biomedical applications.Front Chem.2018;6:439.
    [34] Pauly HM,Place LW,Haut Donahue TL,et al.Mechanical properties and cell compatibility of agarose hydrogels containing proteoglycan mimetic graft copolymers.Biomacromolecules.2017;18(7):2220-2229.
    [35] Humphrey JD,Dufresne ER,Schwartz MA.Mechanotransduction and extracellular matrix homeostasis. Nature Reviews.Mol Cell Biol. 2014;15(12):802-812.
    [36] Sattelle BM, Shakeri J,Cliff MJ,et al.Proteoglycans and their heterogeneous glycosaminoglycans at the atomic scale.Biomacromolecules.2015;16(3):951-961.
    [37] K?witsch A,Zhou G,Groth T. Medical application of glycosaminoglycans:a review.J Tissue Eng Regen Med.2018;12(1):e23-e41.
    [38] Pillet F,Gibot L,Madi M,et al.Importance of endogenous extracellular matrix in biomechanical properties of human skin model.Biofabrication.2017;9(2):025017.
    [39] Acevedo-Jake AM,Ngo DH,Hartgerink JD.Control of collagen triple helix stability by phosphorylation. Biomacromolecules.2017;18(4):1157-1161.
    [40] Griffith AR, Rogers CJ, Miller GM,et al.Predicting glycosaminoglycan surface protein interactions and implications for studying axonal growth.Proc Natl Acad Sci U S A.2017;114(52):13697-13702.
    [41] Ricard-Blum S.Protein–glycosaminoglycan interaction networks:Focus on heparan sulfate. Perspect Sci.2017;11:62-69.
    [42] Huang G,Huang H.Application of hyaluronic acid as carriers in drug delivery.Drug Deliv. 2018;25(1):766-772.
    [43] Shrikanth CB,Sanjana J,Chilkunda ND.One-pot analysis of sulfated glycosaminoglycans. Glycoconj J. 2018;35(1):129-137.
    [44] Wimmer T,Schroeter E,Lorenz B,et al.Detection of the vascular endothelial growth factor with a novel bioluminescence resonance energy transfer pair using a two-component system.Sensors.2017;17(145):1-10.
    [45] K?witsch A, Zhou G, Groth T. Medical application of glycosaminoglycans:a review.J Tissue Eng Regen Med.2018;12(1):e23-e41.
    [46] Westergren-Thorsson G,Hedstr?m U,Nybom A,et al.Increased deposition of glycosaminoglycans and altered structure of heparan sulfate in idiopathic pulmonary fibrosis.Int J Biochem Cell Biol.2017;83:27-38.
    [47] Osago H,Shibata T,Hara N,et al.Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography–electrospray ionization–tandem mass spectrometry.Anal Biochem.2014;467:62-74.
    [48] Nagy G,Peng T,Pohl NLB.Recent liquid chromatographic approaches and developments for the separation and purification of carbohydrates.Anal Methods. 2017;9(24):3579-3593.
    [49] Staples GO, Zaia J.Analysis of glycosaminoglycans using mass spectrometry.Curr Proteomics.2011; 8(4):325-336.
    [50] Ve Depo MC,Detamore MS,Hopkins RA,et al.Recellularization of decellularized heart valves:Progress toward the tissue-engineered heart valve.J Tissue Eng.2017;8:1-21
    [51] Li L,Ly M,Linhardt RJ.Proteoglycan sequence.Mol Biosyst.2012;8(6):1613-1625.
    [52] Kubaski F,Osago H,Mason RW,et al.Glycosaminoglycans detection methods:Applications of mass spectrometry.Mol Genet Metab.2017;120(1-2):67-77.
    [53] Stassen OMJA, Muylaert DEP, Bouten CVC, et al. Current challenges in translating tissue-engineered heart valves.Curr Treat Options Cardiovasc Med.2017;19(9):1-13.
    [54] Lane RS,St Ange K,Zolghadr B,et al.Expanding glycosaminoglycan chemical space:towards the creation of sulfated analogs, novel polymers and chimeric constructs.Glycobiology.2017; 27(7):646-656.
    [55] Yu Y,Chen Y,Mikael P,et al.Surprising absence of heparin in the intestinal mucosa of baby pigs. Glycobiology. 2017;27(1):57-63.
    [56] Mattson JM,Turcotte R,Zhang Y.Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics.Biomech Model Mechanobiol. 2017;16(1):213-225.
    [57] Osago H,Shibata T,Hara N,et al.Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography–electrospray ionization–tandem mass spectrometry.Anal Biochem.2014;467:62-74.
    [58] Sakai D,Nakai T,Hiraishi S,et al.Upregulation of glycosaminoglycan synthesis by Neurotropin in nucleus pulposus cells via stimulation of chondroitin sulfate N-acetylgalactosaminyltransferase 1:A new approach to attenuation of intervertebral disc degeneration.Plo S One.2018;13(8):e0202640.
    [59] Kubaski F,Osago H,Mason RW,et al.Glycosaminoglycans detection methods:applications of mass spectrometry.Mol Genet Metab.2017;120(1-2):67-77.
    [60] Miller D.Regulation of sperm function by oviduct fluid and the epithelium:insight into the role of glycans.Reprod Domest Anim.2015;50 Suppl 2:31-39.
    [61] Sobolev VE,Jenkins RO,Goncharov NV.Sulfated glycosaminoglycans in bladder tissue and urine of rats after acute exposure to paraoxon and cyclophosphamide.Exp Toxicol Pathol.2017;69(6):339-347.
    [62] Xu H,Xu B,Yang Q,et al.Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. Plo S One.2014;9(1):1-13.
    [63] Mendoza-Novelo B,Avila EE,Cauich-Rodríguez JV,et al.Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content.Acta Biomaterialia.2011; 7(3):1241-1248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700