用户名: 密码: 验证码:
柔索电动帆航天器自旋展开动力学建模与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic analysis of the spinning deployment for flexible tether electric sail spacecraft
  • 作者:王然 ; 魏承 ; 武云丽 ; 赵阳 ; 崔祜涛
  • 英文作者:WANG Ran;WEI Cheng;WU Yunli;ZHAO Yang;CUI Hutao;Department of Aerospace Engineering,Harbin Institute of Technology;Beijing Institute of Control Engineering;
  • 关键词:电帆 ; 自旋展开 ; 大变形柔索 ; 柔性连接 ; 展开机构 ; 有限段方法 ; 机构设计 ; 帆面保持
  • 英文关键词:electric sail;;spinning deployment;;flexible tether;;flexible connection;;deployable mechanism;;finite segment method;;structure design;;shape maintenance
  • 中文刊名:HEBG
  • 英文刊名:Journal of Harbin Engineering University
  • 机构:哈尔滨工业大学航空宇航科学与技术学院;北京控制工程研究所;
  • 出版日期:2018-11-01 09:44
  • 出版单位:哈尔滨工程大学学报
  • 年:2019
  • 期:v.40;No.270
  • 基金:国家重点基础研究发展计划(2013CB733004);; 国家自然科学基金项目(51575126)
  • 语种:中文;
  • 页:HEBG201904013
  • 页数:6
  • CN:04
  • ISSN:23-1390/U
  • 分类号:88-93
摘要
电帆柔索动力系统以太阳风动压为动力源是一种颇具前景的无工质推进方式,由末端质量在自旋运动中产生的离心力带动展开。由于大变形、大转动柔索具有较强的几何、材料非线性,刚体运动与变形之间出现强耦合等特性,为了对柔索电帆展开过程中的整体姿态变化进行准确模拟仿真,本文采用基于有限段离散化方法建立了多刚体加柔性连接的柔索模型,实现了电帆柔索展开机构的柔性体建模。针对不同驱动展开角速度以及末端质量的情况,本文通过分析柔索伸长速率、末端运动相位、绳内张紧力等的变化特点,分析展开过程中柔索动态特性及影响因素。其中驱动角速度影响展开速率以及柔索运动相位的变化,末端随半径的增加产生的离心力也越大,可能使柔索出现反向缠绕的现象;对更大长细比的柔索,增加末端质量能够增加电帆自旋展开的稳定性。本文的研究能够为柔索电帆机构设计、柔索展开控制及帆面保持提供有效的理论参考。
        One of the most promising propulsion strategies without internal energy resource consumption is the dynamic system of the electric-sail flexible tether with solar wind dynamic pressure acting on it. Deployment is driven by centrifugal force generated from the rotating end mass. The tether,which undergoes large deformation and rotation,performs strong geometric and material nonlinearity. Strong coupling occurs between rigid motion and deformation modes. For building the attitude model of the electric-sail with flexible tethers,discrete modeling of tether was conducted according to the finite segment method with flexible connection,thereby achieving the deployable mechanism with a flexible tether. For different driven angular velocity and end mass,the extension rate of tether,motion phase of the end,and tension force of rope have been considered in the spinning deployment process,where the driving angular velocity influences the deployment speed and change of motion phase of the flexible tether. Driven angular velocity affects driving angular velocity and change of motion phase of the flexible tether. Larger angular velocity indicates faster deployment speed and larger centrifugal force of the end generated with the increase of radius,which may cause the flexible tether to generate reverse winding. For the flexible tether with a larger slenderness ratio,adding the end mass can increase the stability of the spinning deployment of the electric sail. This study provides the foundation of structure design,sail shape maintenance and control for large deformation.
引文
[1]JANHUNEN P,TOIVANEN P,ENVALL J,et al.Overview of electric solar wind sail applications[J].Proceedings of the Estonian academy of sciences,2014,63(2S):267-278.
    [2]COSMO M L,LORENZINI E C.Tethers in space handbook[M].3rd ed.[s.l.],National Aeronautics and Space Administration,1997.
    [3]FUNASE R,KAWAGUCHI J,MORI O,et al.IKAROS,a solar sail demonstrator and its application to trojan asteroid exploration[C]//Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference.Honolulu,Hawaii,2012.
    [4]JANHUNEN P.Electric sail for spacecraft propulsion[J].Journal of propulsion and power,2004,20(4):763-764.
    [5]WIEGMANN B,VAUGHN J,SCHNEIDER T,et al.Findings from NASA's 2015-2017 Electric Sail Investigations[EB/OL].(2017-06-11).https://ntrs.nasa.gov/search.jsp?R=201700124392018-10-30T07:57:53+00:00Z.
    [6]ENVALL J,JANHUNEN P,TOIVANEN P,et al.E-sail test payload of ESTCube-1 nanosatellite[J].arXiv preprint arXiv:1404.6961,2014.
    [7]SLAVINSKIS A,PAJUSALU M,KUUSTE H,et al.EST-Cube-1 in-orbit experience and lessons learned[J].IEEEaerospace and electronic systems magazine,2015,30(8):12-22.
    [8]KAMMAN J W,HUSTON R L.Modeling of variable length towed and tethered cable systems[J].Journal of guidance,control,and dynamics,1999,22(4):602-608.
    [9]BUCKHAM B,NAHON M,SETO M,et al.Dynamics and control of a towed underwater vehicle system,part I:model development[J].Ocean engineering,2003,30(4):453-470.
    [10]WANG Y,HUSTON R L.A lumped parameter method in the nonlinear analysis of flexible multibody systems[J].Computers&structures,1994,50(3):421-432.
    [11]孔宪仁,徐大富,杨正贤,等.空间绳系系统自由展开建模与仿真[J].振动与冲击,2011,30(5):37-42.KONG Xianren,XU Dafu,YANG Zhengxian,et al.Modeling and simulation for free deployment of a space tether system[J].Journal of vibration and shock,2011,30(5):37-42.
    [12]FULTON J,SCHAUB H.Sensitivity analysis of the electric sail deployment dynamics parameters[C]//Proceedings of the 5th International Conference on Tethers in Space.Ann Arbor,Michigan,2016.
    [13]WITTBRODT E,ADAMIEC-WJCIK I,WOJCIECH S.Dynamics of flexible multibody systems:rigid finite element method[M].Berlin:Springer,2006.
    [14]HAMPER M B,RECUERO A M,ESCALONA J L,et al.Use of finite element and finite segment methods in modeling rail flexibility:a comparative study[J].Journal of computational and nonlinear dynamics,2012,7(4):041007.
    [15]FLORES P,AMBRSIO J,CLARO J C P,et al.Influence of the contact-impact force model on the dynamic response of multi-body systems[J].Proceedings of the institution of mechanical engineers,part K:journal of multibody dynamics,2006,220(1):21-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700