用户名: 密码: 验证码:
水汽吸收对基于宽带腔增强吸收光谱的NO_3自由基测量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Water Vapor Absorption on NO_3 Radical Measurement Based on Broad-Band Cavity-Enhanced Absorption Spectroscopy
  • 作者:孔维平 ; 吴涛 ; 聂玮 ; 徐政 ; 赖荣 ; 何兴道 ; 陈卫东 ; 陈忠平
  • 英文作者:Kong Weiping;Wu Tao;Nie Wei;Xu Zheng;Lai Rong;He Xingdao;Chen Weidong;Chen Zhongping;Jiangxi Engineering Laboratory for Optoelectronic Testing Technology,Nanchang Hangkong University;School of Atmospheric Sciences,Nanjing University;Laboratoire de Physicochimie del'Atmosphère,Universitédu Littoral C?te d'Opale;
  • 关键词:光谱学 ; 非相干宽带腔增强吸收光谱 ; NO_3自由基 ; 水汽有效吸收截面
  • 英文关键词:spectroscopy;;incoherent broadband cavity enhanced absorption spectroscopy;;NO_3 radical;;effective water vapor absorption cross section
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:南昌航空大学江西省光电检测技术工程实验室;南京大学大气科学学院;法国滨海大学大气化学物理实验室;
  • 出版日期:2018-09-14 09:18
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.443
  • 基金:国家自然科学基金(41265011);; 江西省科技厅重点研发计划(20171BBG70003);; 人社部留学人员科技活动项目择优资助项目;; 南昌航空大学研究生创新专项资金项目(YC2017033)
  • 语种:中文;
  • 页:GXXB201902048
  • 页数:9
  • CN:02
  • ISSN:31-1252/O4
  • 分类号:402-410
摘要
非相干宽带腔增强吸收光谱(IBBCEAS)技术凭借其高选择性、高灵敏度、高时空分辨率等优势而逐渐成为NO_3自由基的主要测量方法之一。然而其使用的光谱仪分辨率有限,不足以分辨水汽的精细吸收结构,导致水汽的吸收非线性,进而影响NO_3自由基浓度的准确反演。介绍了一种基于插值法获取水汽有效吸收截面的方法,并将其用于消除IBBCEAS装置中水汽吸收对NO_3自由基浓度反演的干扰。利用不同浓度的水汽吸收谱结合插值法获得了水汽的有效吸收截面,使用该有效吸收截面来反演不同浓度的水汽,反演结果与商用湿度计测量结果的线性相关系数为0.99789。在此基础上测量并拟合了不同水汽浓度下NO_3自由基和NO_2气体的吸收,在拟合残差上未发现水汽残余结构,水汽反演结果与商用湿度计测量值的线性相关系数为0.999。在30 s的积分时间内,NO_3自由基和NO_2的探测极限分别为5.8×10~(-12)和3.6×10~(-9)。将本装置应用于夜间大气中进行NO_3自由基和NO_2浓度的测量,测得NO_3自由基体积分数为18.4×10~(-12)~22.9×10~(-12),平均体积分数为20.2×10~(-12),NO_2体积分数为0.6×10~(-9)~16.0×10~(-9),平均体积分数为9.9×10~(-9)。实验结果表明:利用插值法获得的水汽的有效吸收截面能够有效消除水汽吸收对NO_3自由基浓度反演的干扰,提高NO_3自由基和NO_2气体浓度测量的准确度。
        Incoherent broad-band cavity-enhanced absorption spectroscopy(IBBCEAS) is gradually becoming one of the primary methods for measuring NO_3 radical with the advantages of high selectivity, high sensitivity and high spatial resolution. However, due to the limited spectral resolution of the adopted spectrometers, it is not enough to distinguish the fine absorption structures of water vapor, which results in the non-linear absorption of water vapor and thus affects the accurate retrieval of NO_3 radical concentration. A method based on interpolation for obtaining the effective cross section of water vapor absorption is introduced, which is used for the elimination of the interference of water vapor absorption on the concentration retrieval of NO_3 radical in the IBBCEAS device. The water vapor spectra under different water concentrations are measured to obtain the effective water vapor absorption cross section by the interpolation method. The effective water vapor absorption cross section is used to retrieve water vapors with different water concentrations. The linear correlation coefficient between the retrieval results and the data from the commercial hygrometers is 0.99789. On this basis, the absorption spectra of NO_3 radical and NO_2 gas with different water vapor concentrations are measured and fitted. There is no water vapor absorption structure in the residual spectra, and the linear correlation coefficient between the retrieved water concentrations and the measurement values from the commercial hygrometers is 0.999. The detection limits of NO_3 radical and NO_2 within an integration time of 30 s are 5.8×10~(-12) and 3.6×10~(-9), respectively. This system is applied to measure the concentrations of NO_3 radical and NO_2 in the atmosphere at night, the measured volume fraction of NO_3 radical is 18.4×10~(-12)-22.9×10~(-12) with an average volume fraction of 20.2×10~(-12), while the measured volume fraction of NO_2 is 0.6×10~(-9)-16.0×10~(-9) with an average volume fraction of 9.9×10~(-9). The experimental results show that the effective water vapor absorption cross section obtained by the interpolation method can be used to effectively eliminate the effect of water vapor absorption on the retrieval of NO_3 absorption and to improve the accuracy of NO_3 radical and NO_2 gas concentration measurement.
引文
[1] Rollins A W, Browne E C, Min K E, et al. Evidence for NOx control over nighttime SOA formation[J]. Science, 2012, 337(6099): 1210-1212.
    [2] Ng N L, Brown S S, Archibald A T, et al. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol[J]. Atmospheric Chemistry and Physics, 2017, 17(3): 2103-2162.
    [3] Brown S S, Ryerson T B, Wollny A G, et al. Variability in nocturnal nitrogen oxide processing and its role in regional air quality[J]. Science, 2006, 311(5757): 67-70.
    [4] Monks P S. Gas-phase radical chemistry in the troposphere[J]. Chemical Society Reviews, 2005, 34(5): 376-395.
    [5] Wayne R P, Barnes I, Biggs P, et al. The nitrate radical: physics, chemistry, and the atmosphere[J]. Atmospheric Environment. Part A. General Topics, 1991, 25(1): 1-203.
    [6] Platt U, Perner D, Winer A M, et al. Detection of NO3 in the polluted troposphere by differential optical absorption[J]. Geophysical Research Letters, 1980, 7(1): 89-92.
    [7] Platt U. Modern methods of the measurement of atmospheric trace gases[J]. Physical Chemistry Chemical Physics, 1999, 1(24): 5409-5415.
    [8] Heintz F, Platt U, Flentje H, et al. Long-term observation of nitrate radicals at the Tor Station, Kap Arkona (Rügen)[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D17): 22891-22910.
    [9] Fish D J, Shallcross D E, Jones R L. The vertical distribution of NO3 in the atmospheric boundary layer[J]. Atmospheric Environment, 1999, 33(5): 687-691.
    [10] Vrekoussis M, Mihalopoulos N, Gerasopoulos E, et al. Two-years of NO3 radical observations in the boundary layer over the Eastern Mediterranean[J]. Atmospheric Chemistry and Physics, 2007, 7(2): 315-327.
    [11] Febo A, Perrino C. Measurement of high concentration of nitrous acid inside automobiles[J]. Atmospheric Environment, 1995, 29(3): 345-351.
    [12] Wood E C, Wooldridge P J, Freese J H, et al. Prototype for in situ detection of atmospheric NO3 and N2O5 via laser-induced fluorescence[J]. Environmental Science & Technology, 2003, 37(24): 5732-5738.
    [13] Kim B, Hunter P L, Johnston H S. NO3 radical studied by laser-induced fluorescence[J]. The Journal of Chemical Physics, 1992, 96(6): 4057-4067.
    [14] Matsumoto J, Kosugi N, Imai H, et al. Development of a measurement system for nitrate radical and dinitrogen pentoxide using a thermal conversion/laser-induced fluorescence technique[J]. Review of Scientific Instruments, 2005, 76(6): 064101.
    [15] Yang H N, Chen N, Chen J. Measurement of low-concentration water vapor based on off-axis integrated cavity absorption spectroscopy[J]. Acta Optica Sinica, 2018, 38(2): 0212005. 杨荟楠, 陈宁, 陈军. 基于离轴积分腔吸收光谱技术的低浓度水蒸气测量[J]. 光学学报, 2018, 38(2): 0212005.
    [16] Paldus B A, Kachanov A A. An historical overview of cavity-enhanced methods[J]. Canadian Journal of Physics, 2005, 83(10): 975-999.
    [17] Wang D, Hu R Z, Xie P H, et al. Measurement of nitrogen pentoxide in nocturnal atmospheric based on cavity ring-down spectroscopy[J]. Acta Optica Sinica, 2017, 37(9): 0901001. 王丹, 胡仁志, 谢品华, 等. 基于腔衰荡光谱技术测量夜间大气中五氧化二氮[J]. 光学学报, 2017, 37(9): 0901001.
    [18] Dubé W P, Brown S S, Osthoff H D, et al. Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy[J]. Review of Scientific Instruments, 2006, 77(3): 034101.
    [19] Langridge J M, Laurila T, Watt R S, et al. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source[J]. Optics Express, 2008, 16(14): 10178-10188.
    [20] Venables D S, Gherman T, Orphal J, et al. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy[J]. Environmental Science & Technology, 2006, 40(21): 6758-6763.
    [21] Wu T, Zhao W X, Li J S, et al. Incoherent broadband cavity enhanced absorption spectroscopy based on LED[J]. Spectroscopy and Spectral Analysis, 2008, 28(11): 2469-2472. 吴涛, 赵卫雄, 李劲松, 等. 基于LED的非相干宽带腔增强吸收光谱技术[J]. 光谱学与光谱分析, 2008, 28(11): 2469-2472.
    [22] Fiedler S E, Hese A, Ruth A A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J]. Chemical Physics Letters, 2003, 371(3/4): 284-294.
    [23] Langridge J M, Ball S M, Shillings A J L, et al. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection[J]. Review of Scientific Instruments, 2008, 79(12): 123110.
    [24] Kennedy O J, Ouyang B, Langridge J M, et al. An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2[J]. Atmospheric Measurement Techniques, 2011, 4(9): 1759-1776.
    [25] Wang HC, Chen J, Lu K D. Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient NO3 and N2O5: experimental setup, lab characterizations, and field applications in a polluted urban environment[J]. Atmospheric Measurement Techniques, 2017, 10(4): 1465-1479.
    [26] Li S W, Liu W Q, Wang J T, et al. Measurement of atmospheric NO3 radical with long path differential optical absorption spectroscopy based on red light emitting diodes[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 444-447. 李素文, 刘文清, 王江涛, 等. 基于红光二极管为光源的LP-DOAS系统监测大气NO3自由基的研究[J]. 光谱学与光谱分析, 2013, 33(2): 444-447.
    [27] Hu R Z, Wang D, Xie P H, et al. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement[J]. Acta Physica Sinica, 2014, 63(11): 110707. 胡仁志, 王丹, 谢品华, 等. 二极管激光腔衰荡光谱测量大气NO3自由基[J]. 物理学报, 2014, 63(11): 110707.
    [28] Wu T, Zha Q Z, Chen W D, et al. Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong[J]. Atmospheric Environment, 2014, 95: 544-551.
    [29] Yokelson R J, Burkholder J B, Fox R W, et al. Temperature dependence of the NO3 absorption spectrum[J]. The Journal of Physical Chemistry, 1994, 98(50): 13144-13150.
    [30] Burrows J P, Dehn A, Deters B, et al. Atmospheric remote-sensing reference data from GOME: part 1. temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60(6): 1025-1031.
    [31] Washenfelder R A, Langford A O, Fuchs H, et al. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer[J]. Atmospheric Chemistry and Physics, 2008, 8(24): 7779-7793.
    [32] Bitter M, Ball S M, Povey I M, et al. A broadband cavity ringdown spectrometer for in-situ measurements of atmospheric trace gases[J]. Atmospheric Chemistry and Physics, 2005, 5(9): 2547-2560.
    [33] Axson J L, Washenfelder R A, Kahan T F, et al. Absolute ozone absorption cross section in the Huggins Chappuis minimum (350-470 nm) at 296 K[J]. Atmospheric Chemistry and Physics, 2011, 11(22): 11581-11590.
    [34] Kasyutich V L, Martin P A, Holdsworth R J. Phase-shift off-axis cavity-enhanced absorption detector of nitrogen dioxide[J]. Measurement Science and Technology, 2006, 17(4): 923-931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700