用户名: 密码: 验证码:
医药磁性氧化铁纳米材料的研究和发展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and development of medical magnetic nanomaterials
  • 作者:孙剑飞 ; 张宇 ; 杨芳 ; 马明 ; 熊非 ; 顾宁
  • 英文作者:Jianfei Sun;Yu Zhang;Fang Yang;Ming Ma;Fei Xiong;Ning Gu;Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University;
  • 关键词:医药磁性纳米材料 ; 生物效应 ; 磁场控制 ; 诊疗应用
  • 英文关键词:medical magnetic nanomaterials;;biological effects;;magnetic field;;theranostics
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:东南大学生物科学与医学工程学院生物电子学国家重点实验室江苏省生物材料与器件重点实验室;
  • 出版日期:2019-03-18
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家重点研发计划(2017YFA0104301)资助
  • 语种:中文;
  • 页:KXTB201908010
  • 页数:12
  • CN:08
  • ISSN:11-1784/N
  • 分类号:111-122
摘要
以氧化铁纳米颗粒为代表的医药磁性纳米材料,近年来在医学健康领域得到越来越多的重视.作为唯一得到食品药品监督管理局(FDA)批准,可临床使用的无机功能纳米材料,氧化铁纳米颗粒在纳米生物医学的研究和应用中发挥着至关重要的作用.本文将聚焦于氧化铁纳米颗粒等医药磁性纳米材料,主要基于本实验室的相关研究工作,介绍该领域的研究和发展.主要从如下几个方面进行论述:医药磁性氧化铁纳米材料的制备、医药磁性氧化铁纳米材料的磁学性质、医药磁性氧化铁纳米材料的生物效应、医药磁性氧化铁纳米材料的组装和性质调控以及医药磁性纳米材料及技术的发展趋势.
        Medical magnetic nanomaterials refer to magnetic nanomaterials owning specific biological effects and therapeutic functions which are promising in clinical medicine. A good case in this point is the iron-based magnetic nanomaterials. As the only inorganic nanomaterials approved by FDA for clinical use, iron oxide nanoparticles play a vital role in fundamental research and clinical application of nanomedicine. This feature article mainly focused on the state-of-art of iron oxide nanoparticles on the basis of our own works. The following sections were included in this feature article: Preparation and magnetic property, biological effects, assembly and future development, which was intended to clarify the particularity, importance and complexity of magnetic nanomaterials applied in clinical medicine. Although thermal decomposition method can get iron oxide nanocrystals with better morphology, coprecipitation method is more suitable for the use in clinic. This issue will be emphasized. Superparamagnetism is a prominent advantage of magnetic nanomaterials for medical applications, which is closely related to their size and morphology. The biological effects of iron oxide nanoparticles are versatile and can be regulated by chemical composition, morphology and surface modification. In recent years, some new biological effects of iron oxide nanoparticles still have been found, such as the enzymatic effect. Another outstanding property of magnetic nanomaterials is that the collective property can be regulated by control of assembled structures and interactions between the nanoparticles without changing the property of monomers. Here, the magnetic field-controlled assembly of magnetic nanoparticles and the property regulation will be discussed in detail. In the future, we should firstly further investigate the synthesis of medical magnetic nanomaterials of high performance and expand the clinical applicability. Certainly, the new clinical nanodrugs should be developed. Then, the biological effects of magnetic nanomaterials in the presence of magnetic field should be explored deeply, from which we may discover some new paradigms for the clinic. Finally, the novel characterization techniques and strategies for diagnosis and treatment should be developed. We believe the magnetic nanomaterials will make the society more glorious.
引文
1 Iranmanesh M,Hulliger J.Magnetic separation:Its application in mining,waste purification,medicine,biochemistry and chemistry.Chem Soc Rev,2017,46:5925-5934
    2 Wang T,Zhou Y,Lei C,et al.Magnetic impedance biosensor:A review.Biosens Bioelectron,2017,90:418-435
    3 Angelovski G,Tóthé.Strategies for sensing neurotransmitters with responsive MRI contrast agents.Chem Soc Rev,2017,46:324-336
    4 Conde-Leboran I,Baldomir D,Martinez-Boubeta C,et al.A single picture explains diversity of hyperthermia response of magnetic nanoparticles.J Phys Chem C,2015,119:15698-15706
    5 Ulbrich K,HoláK,?ubr V,et al.Targeted drug delivery with polymers and magnetic nanoparticles:Covalent and noncovalent approaches,release control,and clinical studies.Chem Rev,2016,116:5338-5431
    6 Chen R,Romero G,Christiansen M G,et al.Wireless magnetothermal deep brain stimulation.Science,2015,12:1261821-1261827
    7 Gahramanov S,Muldoon L L,Varallyay C G,et al.Pseudoprogression of Glioblastoma after chemo-and radiation therapy:Diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival.Radiology,2013,266:842-852
    8 Fredrickson J,Serkova N J,Wyatt S K,et al.Clinical translation of ferumoxytol-based vessel size imaging(VSI):Feasibility in a phase Ioncology clinical trial population.Magnet Reson Med,2017,77:814-825
    9 Yu E Y,Bishop M,Zheng B,et al.Magnetic particle imaging:A novel in vivo imaging platform for cancer detection.Nano Lett,2017,17:1648-1654
    10 Ye D W,Li Y,Gu N.Magnetic labeling of natural lipid encapsulations with iron-based nanoparticles.Nano Res,2018,11:2970-2991
    11 McCarthy J R,Weissleder R.Multifunctional magnetic nanoparticles for targeted imaging and therapy.Adv Drug Delivery Rev,2008,60:1241-1251
    12 Ali A,Zafar H,Zia M,et al.Synthesis,characterization,applications,and challenges of iron oxide nanoparticles.Nanotechnol Sci Appl,2016,9:49-67
    13 Ling D S,Lee N Y,Hyeon T W.Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.Acc Chem Res,2015,48:1276-1285
    14 Frey N A,Peng S,Cheng K,et al.Magnetic nanoparticles:Synthesis,functionalization,and applications in bioimaging and magnetic energy storage.Chem Soc Rev,2009,38:2532-2542
    15 Hao R,Xing R J,Xu Z C,et al.Synthesis,functionalization,and biomedical applications of multifunctional magnetic nanoparticles.Adv Mater,2010,22:2729-2742
    16 Gobbo O L,Sjaastad K,Radomski M W,et al.Magnetic nanoparticles in cancer theranostics.Theranostics,2015,5:1249-1263
    17 Wu L,Mendoza-Garcia A,Li Q,et al.Organic phase syntheses of magnetic nanoparticles and their applications.Chem Rev,2016,116:10473-10512
    18 Ma M,Zhang Y,Yu W,et al.Preparation and characterization of magnetite nanoparticles coated by amino silane.Colloids Surfaces A,2003,212:219-226
    19 Sun Y K,Duan L,Guo Z R,et al.An improved way to prepare superparamagnetic magnetite/silica core-shell nanoparticles for possible biological application.J Mag Mag Mater,2005,285:65-70
    20 Chen Z P,Zhang Y,Zhang S,et al.Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA.Colloids Surfaces A,2008,316:210-216
    21 Zhang S,Bian Z P,Gu C R,et al.Preparation of anti-human cardiac troponin I immunomagnetic nanoparticles and biological activity assays.Colloids Surfaces B,2007,55:143-148
    22 Chen B,Li Y,Zhang X Q,et al.An efficient synthesis of ferumoxytol induced by alternating-current magnetic field.Mater Lett,2016,170:93-96
    23 Hu L,Zhang R R,Chen Q W.Synthesis and assembly of nanomaterials under magnetic fields.Nanoscale,2014,6:14064-14105
    24 Sun J F,Sui Y X,Wang C Y,et al.The investigation of frequency response for the magnetic nanoparticulate assembly induced by time-varied magnetic field.Nanoscale Res Lett,2011,6:453-458
    25 Chen B,Sun J F,Fan F G,et al.Ferumoxytol of ultrahigh magnetization produced by hydrocooling and magnetically internal heating co-precipitation.Nanoscale,2018,10:7369-7376
    26 Zhao Z H,Zhou Z J,Bao J F,et al.Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging.Nat Commun,2013,4:2266-2272
    27 Xie J,Yan C Z,Zhang Y,et al.Shape evolution of“multibranched”Mn-Zn ferrite nanostructures with high performance:A transformation of nanocrystals into nanoclusters.Chem Mater,2013,25:3702-3709
    28 Ma M,Wu Y,Zhou J,et al.Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field.J Mag Mag Mater,2004,268:33-39
    29 Lee H,Shin T H,Cheon J W,et al.Recent developments in magnetic diagnostic systems.Chem Rev,2015,115:10690-10724
    30 Wang X Y,Zhou X J.Magnetic resonance imaging in personalized medicine.Sci China Life Sci,2017,60:1-4
    31 Liu Y,Li M X,Yang F,et al.Magnetic drug delivery systems.Sci China Mater,2017,60:471-486
    32 Lee J H,Jang J T,Choi J S,et al.Exchange-coupled magnetic nanoparticles for efficient heat induction.Nat Nanotechnol,2011,6:418-422
    33 Liu X L,Yang Y,Ng C T,et al.Magnetic vortex nanorings:A new class of hyperthermia agent for highly efficient in vivo regression of tumors.Adv Mater,2015,27:1939-1944
    34 Zhang H,Li L,Liu X L,et al.Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent.ACS Nano,2017,11:3614-3631
    35 Liu H Y,Sun J F,Wang H Y,et al.Quantitative evaluation of the total magnetic moments of colloidal magnetic nanoparticles:A kinetics-based method.ChemPhysChem,2015,16:1598-1602
    36 Arruebo M,Fernández-Pacheco R,Ibarra M R,et al.Magnetic nanoparticles for drug delivery.Nano Today,2007,2:22-32
    37 Lee N Y,Yoo D W,Ling D S,et al.Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy.Chem Rev,2015,115:10637-10689
    38 Kinoshita R,Ishima Y,Vtg C,et al.Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer.Biomaterials,2017,140:162-169
    39 Li Y,Gu N.Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes:A simulation study.J Phys Chem B,2010,114:2749-2754
    40 Lin X B,Gu N.Surface properties of encapsulating hydrophobic nanoparticles regulates the main phase transition temperature of lipid bilayers:A simulation study.Nano Res,2014,7:1195-1204
    41 Liu D F,Wu W,Ling J J,et al.Effective PEGylation of iron oxide nanoparticles for high performance in vivo cancer imaging.Adv Funct Mater,2011,21:1498-1504
    42 Yang C P,Xiong F,Wang J,et al.Anti-ABCG2 monoclonal antibody in combination with paclitaxel nanoparticles against cancer stem-like cell activity in multiple myeloma.Nanomedicine,2013,9:45-60
    43 Wang Q W,Chen B,Ma F,et al.Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2.Nano Res,2017,10:626-642
    44 Xie J,Zhang Y,Yan C Y,et al.High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics.Biomaterials,2014,35:9126-9136
    45 Xie J,Yan C Y,Yan Y,et al.Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia:A comparison of passive and active targeting effects.Nanoscale,2016,8:16902-16915
    46 Jia Z Y,Song L N,Zang F C,et al.Active-target T1-weighted MR imaging of tiny hepatic tumor via RGD Modified ultra-small Fe3O4nanoprobes.Theranostics,2016,6:1780-1791
    47 Yang F,Chen P,He W,et al.Bubble microreactors triggered by an alternating magnetic field as diagnostic and therapeutic delivery devices.Small,2010,6:1300-1305
    48 Duan L,Yang F,He W,et al.A Multi-gradient targeting drug delivery system based on RGD-l-TRAIL-labeled magnetic microbubbles for cancer theranostics.Adv Funct Mater,2016,26:8313-8324
    49 Liu Y,Yang F,Yuan C X,et al.Magnetic Nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics.ACS Nano,2017,11:1509-1519
    50 Gao L Z,Zhuang J,Nie L,et al.Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.Nat Nanotechnol,2007,2:577-583
    51 Wei H,Wang E K.Nanomaterials with enzyme-like characteristics(nanozymes):Next-generation artificial enzymes.Chem Soc Rev,2013,42:6060-6093
    52 Chen Z W,Yin J J,Zhou Y T,et al.Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity.ACS Nano,2012,6:4001-4012
    53 Zhang W,Hu S L,Yin J J,et al.Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers.J Am Chem Soc,2016,138:5860-5865
    54 Ling D S,Park W,Park S J,et al.Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors.J Am Chem Soc,2014,136:5647-5655
    55 Zhou Z J,Zhao Z H,Zhang H,et al.Interplay between longitudinal and transverse contrasts in Fe3O4 nanoplates with(111)exposed surfaces.ACS Nano,2014,8:7976-7985
    56 Zhang H,Liu X L,Zhang Y F,et al.Magnetic nanoparticles based cancer therapy:Current status and applications.Sci China Life Sci,2018,61:400-414
    57 Zeng C J,Chen Y X,Kirschbaum K,et al.Emergence of hierarchical structural complexities in nanoparticles and their assembly.Science,2016,354:1580-1584
    58 Niederberger M.Multiscale nanoparticle assembly:From particulate precise manufacturing to colloidal processing.Adv Funct Mater,2017,27:1703647
    59 Singh G,Chan H,Udayabhaskararao T,et al.Magnetic field-induced self-assembly of iron oxide nanocubes.Faraday Discuss,2015,181:403-421
    60 Bharti B,Fameau A L,Rubinstein M,et al.Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks.Nat Mater,2015,14:1104-1109
    61 Sun J F,Zhang Y,Chen Z P,et al.Fibrous aggregation of magnetite nanoparticles induced by a time-varied magnetic field.Angew Chem Int Ed,2007,46:4767-4770
    62 Hu K,Sun J F,Guo Z B,et al.A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field.Adv Mater,2015,27:2507-2514
    63 Sun J F,Fan F G,Wang P,et al.Orientation-dependent thermogenesis of assembled magnetic nanoparticles in the presence of an alternating magnetic field.ChemPhysChem,2016,17:3377-3384
    64 Fan F G,Liu J,Sun J F,et al.Magnetic energy-based understanding the mechanism of magnetothermal anisotropy for macroscopically continuous film of assembled Fe3O4 nanoparticles.AIP Adv,2017,7:85109-85119
    65 Wang P,Sun J F,Lou Z C,et al.Assembly-induced thermogenesis of gold nanoparticles in the presence of alternating magnetic field for controllable drug release of hydrogel.Adv Mater,2016,28:10801-10808
    66 Fan F G,Sun J F,Chen B,et al.Rotating magnetic field-controlled fabrication of magnetic hydrogel with spatially disk-like microstructures.Sci China Mater,2018,61:1112-1122
    67 Xiong F,Tian J L,Hu K,et al.Superparamagnetic anisotropic nano-assemblies with longer blood circulation in vivo:A highly efficient drug delivery carrier for leukemia therapy.Nanoscale,2016,8:17085-17089
    68 Sun J F,Liu X,Huang J Q,et al.Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies.Sci Rep,2014,4:5125-5133
    69 Liu X,Zhang J,Tang S J,et al.Growth enhancing effect of LBL-assembled magnetic nanoparticles on primary bone marrow cells.Sci China Mater,2016,59:901-910
    70 Yang Y,Wang Q W,Song L N,et al.Uptake of magnetic nanoparticles for adipose-derived stem cells with multiple passage numbers.Sci China Mater,2017,60:892-902
    71 Guo Z B,Hu K,Sun J F,et al.Fabrication of hydrogel with cell adhesive micropatterns for mimicking the oriented tumor-associated extracellular matrix.ACS Appl Mater Interfaces,2014,6:10963-10968
    72 Hu K,Zhou N Z,Li Y,et al.Sliced magnetic polyacrylamide hydrogel with cell-adhesive microarray interface:A novel multicellular spheroid culturing platform.ACS Appl Mater Interfaces,2016,8:15113-15119
    73 Zanganeh S,Hutter G,Spitler R,et al.Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues.Nat Nanotechnol,2016,11:986-994
    74 Xiong F,Wang H,Feng Y D,et al.Cardioprotective activity of iron oxide nanoparticles.Sci Rep,2015,5:8579-8586
    75 Pei Y H,Zhang H D,Chen B,et al.Altered long noncoding RNA profiles in rat ischemia-reperfusion injury after IONPs administration.Int J Clin Exp Med,2017,10:12112-12122
    76 Wang Q W,Chen B,Cao M,et al.Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs.Biomaterials,2016,86:11-20
    77 Meng J,Zhang Y,Qi X J,et al.Paramagnetic nanofibrous composite films enhance the osteogenic responses of pre-osteoblast cells.Nanoscale,2010,2:2565-2569
    78 Xu H Y,Gu N.Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration.Front Mater Sci,2014,8:20-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700