用户名: 密码: 验证码:
隧洞开挖过程中围岩安全系数演化特征与支护时机选择方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evolution of surrounding rock safety factor and support installation time during tunnel excavation
  • 作者:苏凯 ; 张妍珺 ; 伍鹤皋 ; 周利
  • 英文作者:SU Kai;ZHANG Yanjun;WU Hegao;ZHOU Li;State Key Laboratory of Water Resources and Hydropower Engineering Sciences,Wuhan University;
  • 关键词:隧道工程 ; 开挖 ; 安全系数 ; 围岩稳定 ; 支护时机
  • 英文关键词:tunnelling engineering;;excavation;;safety factor;;rock mass stability;;support installation time
  • 中文刊名:YSLX
  • 英文刊名:Chinese Journal of Rock Mechanics and Engineering
  • 机构:武汉大学水资源与水电工程科学国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:岩石力学与工程学报
  • 年:2019
  • 期:v.38;No.360
  • 基金:国家重点研发计划(2016YFC0401803);; 国家自然科学基金资助项目(51579194,51879207)~~
  • 语种:中文;
  • 页:YSLX2019S1037
  • 页数:12
  • CN:S1
  • ISSN:42-1397/O3
  • 分类号:379-390
摘要
通过数值模拟,提出一种确定初次支护施作时机的新方法。引入点安全系数评价监测断面开挖边界各点的稳定性,定义所有监测点的点安全系数的几何平均值为整体安全系数,用以评价该断面的整体稳定性,避免选择少数监测点带来的结果特异性。建立围岩整体安全系数与监测断面相对掌子面距离之间的对应关系,一旦围岩整体安全系数降低至允许值,则认为围岩稳定性进入临界状态,对应的相对掌子面位置即为推荐初期支护的施作位置。通过这一方法,可针对某一典型断面,快速确定其初期支护的施作时机,在施工中做到及时反馈。同时,结合不同岩性和地应力条件方案的计算结果,表明了所提出的支护时机选择方法具有较好的规律性,以期为实际工程提供参考。
        A novel methodology is proposed to determine the timing of initial support installation via the numerical simulation by FLAC~(3D). The point safety factor is introduced to evaluate the stability of each rock zone on the excavation boundary. And the geometric mean of all point safety factors is defined as the global safety factor to evaluate the overall stability, which avoids selecting limited and specific monitoring points. Then, the comprehensive graphic relationship between global safety factor and distance to tunnel face is established. Once global safety factor decreases to an admissible value,the stability of surrounding rock is in critical state and the corresponding distance in graphic relationship is the recommended location for installing initial support. In these procedures,the installation time of initial support at the typical tunnel section can be quickly designed and fed back during construction,which is efficient and effective. Meanwhile,several cases with different conditions have been carried out to validate the regularity of the method.
引文
[1]来颖,肖明,胡田清.地下洞室开挖锚固支护时机数值模拟[J].水电能源科学,2011,29(1):89-92.(LAI Ying,XIAO Ming,HUTianqing.Numerical simulation of anchorage supporting opportunity for excavation of underground chamber[J].Water Resources and Power,2011,29(1):89-92.(in Chinese))
    [2]吴秋军,王明年,刘大刚.基于现场位移监测数据统计分析的隧道围岩稳定性研究[J].岩土力学,2012,33(增2):359-364.(WUQiujun,WANG Mingnian,LIU Dagang.Research on stability of tunnel surrounding rocks based on statistical analysis of on-site displacement monitoring data[J].Rock and Soil Mechanics,2012,33(Supp.2):359-364.(in Chinese))
    [3]许传华,任青文,李瑞.地下工程围岩稳定性分析方法研究进展[J].金属矿山,2003,(2):34-37.(XU Chuanhua,REN Qingwen,LI Rui.Advances in researching the stability analysis methods of the surrounding rock mass in underground engineering[J].Metal Mine,2003,(2):34-37.(in Chinese))
    [4]郑颖人,邱陈瑜,张红,等.关于土体隧洞围岩稳定性分析方法的探索[J].岩石力学与工程学报,2008,27(10):1 968-1 980.(ZHENG Yingren,QIU Chenyu,ZHANG Hong,et al.Exploration of stability analysis methods for surrounding rocks of soil tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(10):1 968-1 980.(in Chinese))
    [5]郑颖人.岩土数值极限分析方法的发展与应用[J].岩石力学与工程学报,2012,31(7):1 297-1 316.(ZHENG Yingren.Development and application of numerical limit analysis for geological materials[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(7):1 297-1 316.(in Chinese))
    [6]张继勋,刘秋生.地下工程围岩稳定性分析方法现状与不足[J].水利科技与经济,2005,11(2):71-74.(ZHANG Jixun,LIU Qiusheng.Analyzing methods of surrounding rock stability in underground engineering[J].Water Conservancy Science and Technology and Economy,2005,11(2):71-74.(in Chinese))
    [7]邵国建,卓家寿,章青.岩体稳定性分析与评判准则研究[J].岩石力学与工程学报,2003,22(5):691-696.(SHAO Guojian,ZHUOJiashou,ZHANG Qing.Research on analysis method and criterion of rockmass stability[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(5):691-696.(in Chinese))
    [8]李树忱,李术才,徐帮树.隧道围岩稳定分析的最小安全系数法[J].岩土力学,2007,28(3):549-554.(LI Shuchen,LI Shucai,XUBangshu.Minimum safety factor method for stability analysis of surrounding rockmass of tunnel[J].Rock and Soil Mechanics,2007,28(3):549-554.(in Chinese))
    [9]张红,郑颖人,杨臻,等.黄土隧洞安全系数初探[J].地下空间与工程学报,2009,5(2):297-306.(ZHANG Hong,ZHENGYingren,YANG Zhen,et al.Exploration of safety factors of the loess tunnel[J].Chinese Journal of Underground Space and Engineering,2009,5(2):297-306.(in Chinese))
    [10]杨臻,郑颖人,张红,等.岩质隧洞围岩稳定性分析与强度参数的探讨[J].地下空间与工程学报,2009,5(2):283-290.(YANGZhen,ZHENG Yingren,ZHANG Hong,et al.Analysis on stability for the surrounding rock of tunnel and exploring the strength parameters[J].Chinese Journal of Underground Space and Engineering,2009,5(2):283-290.(in Chinese))
    [11]陈星,王乐华,刘君健,等.基于Mohr-Coulomb准则点安全系数的隧道围岩稳定分析[J].水电能源科学,2010,28(4):100-102.(CHEN Xing,WANG Lehua,LIU Junjian,et al.Stability analysis of tunnel surrounding rock based on Mohr-Coulomb point safety factor[J].Water Resource and Power,2010,28(4):100-102.(in Chinese))
    [12]袁木,肖明,刘会波,等.基于Z-P屈服准则隧道围岩稳定性的单元安全系数法分析[J].现代隧道技术,2015,52(5):48-53.(YUAN Mu,XIAO Ming,LIU Huibo,et al.Z-P yield criterion based analysis of the element safety factor for the stability of surrounding rock[J].Modern Tunnelling Technology,2015,52(5):48-53.(in Chinese))
    [13]陈明祥.弹塑性力学[M].北京:科学出版社,2007:226-244.(CHEN Mingxiang.Elastic and plastic mechanics[M].Beijing:Science Press,2007:226-244.(in Chinese))
    [14]郑文棠.基于FLAC3D的强度折减法和点安全系数法对比[J].水利与建筑工程学报,2010,8(4):54-57.(ZHENG Wentang.Contrast on strength reduction method and point safety factor method with FLAC3D[J].Journal of Water Resources and Architectural Engineering,2010,8(4):54-57.(in Chinese))
    [15]孙元春,尚彦军.岩石隧道围岩变形时空效应分析[J].工程地质学报,2008,16(2):211-215.(SUN Yuanchun,SHANG Yanjun.Integrated analysis of the tempo-spatial effect of surrounding rock deformation in tunneling[J].Journal of Engineering Geology,2008,16(2):211-215.(in Chinese))
    [16]孙钧,朱合华.软弱围岩隧洞施工性态的力学模拟与分析[J].岩土力学,1994,15(4):20-33.(SUN Jun,ZHU Hehua.Mechanical simulation and analysis of behaviour of soft and weak rocks in the construction of a tunnel opening[J].Rock and Soil Mechanics,1994,15(4):20-33.(in Chinese))
    [17]CARRANZA-TORRES C,FAIRHURST C.Application of the Convergence-Confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J].Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2000,15(2):187-213.
    [18]PANET M.Le calcul des tunnels par la méthode convergence-confinement[M].Paris:Press de l′école Nationale des Ponts et Chaussées,1995.
    [19]ZHAO D,JIA L,WANG M,et al.Displacement prediction of tunnels based on a generalised Kelvin constitutive model and its application in a subsea tunnel[J].Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2016,54:29-36.
    [20]张妍珺,苏凯,周利,等.基于收敛-约束法的隧洞纵向变形演化规律研究与支护时机估算[J].岩土力学,2017,38(增1):471-478.(ZHANG Yanjun,SU Kai,ZHOU Li,et al.Estimation of ground support installation time based on the tunnel longitudinal displacement of convergence-confinement method[J].Rock and Soil Mechanics,2017,38(Supp.1):471-478.(in Chinese))
    [21]杨灵,韩立军,蔚立元.基于虚拟支撑力的隧道合理支护时机探讨分析[J].现代隧道技术,2012,49(1):66-71.(YANG Ling,HANLijun,WEI Liyuan.Research on tunnel supporting time based on virtual supporting force[J].Modern Tunnelling Technology,2012,49(1):66-71.(in Chinese))
    [22]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2013:48-55.(CHEN Yumin,XU Dingping.FLAC/FLAC3D basis and engineering example[M].Beijing:China Water Power Press,2013:48-55.(in Chinese))
    [23]SU K,ZHANG Y J,CHANG Z H,et al.Transverse extent of numerical model for deep buried tunnel excavation[J].Tunnelling and Underground Space Technology,2019,84:373-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700