用户名: 密码: 验证码:
柔性微粒介电泳分离过程的多尺度模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MULTISCALE SIMULATION OF THE DIELECTROPHORESIS SEPARATION PROCESS OF FLEXIBLE MICROPARTICLE
  • 作者:蔡文莱 ; 黄亚军 ; 刘伟阳 ; 彭浩宇 ; 黄志刚
  • 英文作者:Cai Wenlai;Huang Yajun;Liu Weiyang;Peng Haoyu;Huang Zhigang;Guangzhou Key Laboratory of Nonconventional Machining and Equipment,Guangdong University of Technology;
  • 关键词:介电泳分离 ; 格子玻尔兹曼法 ; 有限单元法 ; 耦合仿真 ; 柔性微粒
  • 英文关键词:dielectrophoresis field flow fraction;;lattice Boltzmann method;;finite element method;;coupling simulation;;flexible micro-particle
  • 中文刊名:LXXB
  • 英文刊名:Chinese Journal of Theoretical and Applied Mechanics
  • 机构:广东工业大学广州市非传统制造技术及装备重点实验室;
  • 出版日期:2018-11-28 16:41
  • 出版单位:力学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金项目(500110046);; 广东省高等学校高层次人才项目(400140016);; 佛山市科技创新团队项目(2015IT100162)资助
  • 语种:中文;
  • 页:LXXB201902011
  • 页数:10
  • CN:02
  • ISSN:11-2062/O3
  • 分类号:105-114
摘要
介电泳分离是一种高效的微细颗粒分离技术,利用非均匀电场极化并操纵分离微流道中的颗粒.柔性微粒在介电泳分离过程中同时受多种物理场、多相流和微粒变形等复杂因素的影响,仅用单一的计算方法对其进行模拟存在一定的难度,本文采用有限单元-格子玻尔兹曼耦合计算的方法处理这一难题.介观尺度的格子玻尔兹曼方法将流体看成由大量微小粒子组成,在离散格子上求解玻尔兹曼输运方程,易于处理多相流及大变形问题,特别适合模拟柔性颗粒在介电泳分离过程中的变形情况.另一方面,介电泳分离过程的模拟需求解流体、电场和微粒运动方程,计算量相当庞大,通过有限单元法求解介电泳力,可提高计算效率.利用这种多尺度耦合计算方法,对一款现有的介电泳芯片分离过程进行了模拟.分析了微粒在电场作用下产生的介电泳力,揭示了介电泳力与电场变化率等因素之间的关系.对微粒运动轨迹及其变形的情况进行了研究,发现微粒的变形主要与流体剪切作用有关.这种多尺度耦合计算方法,为复杂微流体的计算提供了一种有效的解决方案.
        Dielectrophoresis field flow fraction(DEP-FFF) is an efficient method for the separation of micro particles,in which the particles in micro channels are polarized and controlled to separate via a non-uniform electric field. The separation of flexible particles in DEP-FFF are influenced by many complex factors including multiphysics effects, multiphase flows and particle deformation. It is difficult to simulate the process with a single calculation method. In this paper, a finite element-lattice Boltzmann coupling method is introduced to solve this problem. The lattice Boltzmann is a mesoscopic method, in which the micro volumes of a fluid are represented with small particles. The Boltzmann transport equation for fluid dynamics is solved on discrete lattice, such that the multiphase flows and large deformation problems can be easily handled. Due to these advantages, the particle deformation in the DEP-FFF process can be readily handled by the lattice Boltzmann method. On the other hand, the simulation of the total DEP-FFF process requires the solution of the Navier-Stokes equation, dielectrophoresis force equation and particle trajectory equation. The computational burden will be very severe if only the lattice Boltzmann method is employed. By computing the dielectrophoresis force with finite element method, the computational efficiency is significantly improved. The finite element-lattice Boltzmann coupling method is applied in the simulation of the particle separation process within a typical DEP-FFF chip. Analyzing the dielectrophoresis force on the particles produced by the non-uniform electric field, the relationship between the dielectrophoresis force and the change rate of electric field is revealed. The trajectories of the particles under different electric conditions are traced to validate the efficiency of the DEP-FFF method. Most importantly, the deformations of the particle under the non-uniform electric filed are analyzed. It is found that the change of the particle trajectory is controlled by the dielectrophoresis force and thus the non-uniform electric field, while the deformation of the particle is mainly related to the shearing effect of the flows. The finite element-lattice Boltzmann multiscale coupling method introduced in this paper provides an effective solution for the calculation of complex micro flows.
引文
1姚梦迪,吕雪飞,邓玉林.基于微流控芯片的核酸检测技术.生命科学仪器,2017,15(4):22-28(Yao Mengdi,L¨u Xuefei,Deng Yulin.Nucleic acid detection techniques based on microfluidic chip.Life Science Instruments,2017,15(4):22-28(in Chinese))
    2孙克.微流控芯片技术在生命科学领域的研究进展.当代医学,2009,15(16):20-21(Sun Ke.Research progress of microfluidic chip technology in the field of life science.Contemporary Medicine,2009,15(16):20-21(in Chinese))
    3戴小珍,蔡绍皙,蒋稼欢等.微流控技术对细胞微环境的模拟及应用研究.生物物理学报,2010,26(3):209-215(Dai Xiaozhen,Cai Shaoxi,Jiang Jiahuan,et al.Simulation and application of microfluidic technology to cell microenvironment.Acta Biophysica Sinica,2010,26(3):209-215(in Chinese))
    4 Arosio P,Muller T,Mahadevan L,et al.Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles.Nano Lett,2014,14(5):2365-2371
    5曾一笑,樊磊,吴菲等.基于介电电泳的粒子分离微流控芯片的研究.仪表技术与传感器,2017(2):5-8(Zeng Yixiao,Fan Lei,Wu Fei,et al.Study on particle separation of microfluidic chip based on dielectrophoresis.Instrument Technique&Sensor,2017(2):5-8(in Chinese))
    6董盛华,张晶,葛胜祥.微流控芯片细胞捕获分离方法概述.生物化学与生物物理进展,2016,43(11):1102-1110(Dong Shenghua,Zhang Jing,Ge Shengxiang.Microfluidic chips for cell capturing and separation.Progress in Biochemistry and Biophysics,2016,43(11):1102-1110(in Chinese))
    7 Sun J,Gao Y,Isaacs RJ,et al.Simultaneous on-chip DC dielectrophoretic cell separation and quantitative separation performance characterization.Anal Chem,2012,84(4):2017-2024
    8 Song Y,Yang J,Shi X,et al.DC dielectrophoresis separation of marine algae and particles in a microfluidic chip.Science China Chemistry,2012,55(4):524-530
    9陶冶.基于液滴微流控的病毒颗粒检测与分离关键技术研究.[博士论文].哈尔滨:哈尔滨工业大学,2016(Tao Ye.Reseatch on key Technologies of virus particle detection and sorting using dropbased microfluidics.[PhD Thesis].Harbin:Harbin Institute of Technology,2016(in Chinese))
    10 Pohl HA,Crane JS.Dielectrophoresis of cells.Biophysical Journal,1972,11(9):606-611
    11吴菲,樊磊,曾一笑等.基于介电泳原理的三明治式微流控芯片.微纳电子技术,2018(2):116-121(Wu Fei,Fan Lei,Zeng Yixiao,et al.Sandwiched microfluidic chip based on the principle of dielectrophoresis.Micronanoelectronic Technology,2018(2):116-121(in Chinese))
    12王兆伟,武晓刚,陈魁俊等.一种力-电协同驱动的细胞微流控培养腔理论模型.力学学报,2018,50(1):124-137(Wang Zhaowei,Wu Xiaogang,Chen Kuijun,et al.A theoretical microfluidic flow model for the cell culture chamber under the pressure gradient and electric field driven loads.Chinese Journal of Theoretical and Applied Mechanics,2018,50(1):124-137(in Chinese))
    13 Girimaji S.Lattice Boltzmann method:Fundamentals and engineering applications with computer codes.AIAA Journal,2011,51(4):398-404
    14 Aldaeus F,Lin Y,Amberg G,et al.Multi-step dielectrophoresis for separation of particles.Journal of Chromatography A,2006,1131(1-2):261
    15 Piacentini N,Mernier G,Tornay R,et al.Separation of platelets from other blood cells in continuous-flow by dielectrophoresis fieldflow-fractionation.Biomicrofluidics,2011,5(3):427
    16 Spelt JK,Absolom DR,Zingg W,et al.Determination of the surface tension of biological cells using the freezing front technique.Cell Biophysics,1982,4(2-3):117-131
    17 Ai Y,Park S,Zhu J,et al.DC electrokinetic particle transport in an L-shaped microchannel.Langmuir the Acs Journal of Surfaces&Colloids,2010,26(4):2937-2944
    18陈琰,安立宝.微粒受介电泳力作用运动的仿真研究.固体电子学研究与进展,2015(1):25-30(Chen Yan,An Libao.Simulation of particle motion caused by dielectrophoretic force,Research&Progress of SSE,2015(1):25-30(in Chinese))
    19曾议,孙友文.一种微流控系统仿真的新方法.高校化学工程学报,2014(3):641-647(Zeng Yi,Sun Youwen.A new simulation method for microfluidic systems.Journal of Chemical Engineering of Chinese Universities,2014(3):641-647(in Chinese))
    20王伟.基于介电泳的船舶压载水中微藻分离芯片研究.[硕士论文].大连:大连海事大学,2018(Wang Wei.Study on microalgae separation chip in ship ballast water based on dielectrophoresis.[Master Thesis].Dalian:Dalian Maritime University,2018(in Chinese))
    21 And SJM,Berendsen HJC.Permeation Process of small molecules across lipid membranes studied by molecular dynamics simulations.Journal of Physical Chemistry,2017,100(41):16729-16738
    22曹了然,张春煜,张鼎林等.分子动力学模拟技术在生物分子研究中的进展.物理化学学报,2017,33(7):1354-1365(Cao Liaoran,Zhang Chunyu,Zhang Dinglin,et al.Recent developments in using molecular dynamics simulation techniques to study biomolecules.Acta Physico-Chimica Sinica,2017,33(7):1354-1365(in Chinese))
    23 Phanich J,Threeracheep S,Kungwan N,et al.Glycan binding and specificity of viral influenza neuraminidases by classical molecular dynamics and replica exchange molecular dynamics simulations.Journal of Biomolecular Structure and Dynamics,2018:1-34
    24 Sheikholeslami M.Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method.Journal of Molecular Liquids,2017,231:555-565
    25 Mohamad AA.Lattice Boltzmann Method.London:Springer,2011
    26 Zhang P,Gao C,Zhang N,et al.Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics.Cellular&Molecular Bioengineering,2014,7(4):552-574
    27王永雷,李占伟,刘鸿等.耗散微粒动力学模拟方法在软物质体系研究中的一些进展与应用.物理学进展,2011,31(1):1-21(Wang Yonglei,Li Zhanwei,Liu Hong,et al.Progress and applications of dissipative particle dynamics simulation method in soft matters.Progress in Physics,2011,31(1):1-21(in Chinese))
    28陈君,彭晓峰.微颗粒布朗运动的LBM数值模拟//中国工程热物理学会2004年传热传质学学术会议论文集(上册).北京,2004:556-559(Chen Jun,Peng Xiaofeng.Numerical simulation of brownian motion of microparticles by LBM//Chinese Society of Engineering Thermophysics Proceedings of 2004 Academic Conference on heat and mass transfer(Vol.1).Beijing,2004:556-559(in Chinese))
    29 Fu Y,Bai L,Zhao S,et al.Simulation of reactive mixing behaviors inside micro-droplets by a lattice Boltzmann method.Chemical Engineering Science,2018,181:79-89
    30 Leu TS,Weng CY.Studies of particle levitation in a dielectrophoretic field-flow fraction-based microsorter.Journal of Micro/Nanolithography Mems&Moems,2009,8(2):75-78
    31李钰航.介电液体中多种电荷输运的格子-Boltzmann模拟及传热分析.[硕士论文].哈尔滨:哈尔滨工业大学,2017(Li Yuhang.Lattice Boltzmann simulation of multi-charge transprotation in dielectric fluide and heat transfer analysis.[Master Thesis].Harbin:Harbin Institute of Technology,2017(in Chinese))
    32 Chen L,Zheng XL,Ning HU,et al.Research progress on microfluidic chip of cell separation based on dielectrophoresis.Chinese Journal of Analytical Chemistry,2015,43(2):300-309
    33 Ai Y,Park S,Zhu J,et al.DC electrokinetic particle transport in an L-shaped microchannel.Langmuir the Acs Journal of Surfaces&Colloids,2010,26(4):2937-2944
    34 Pethig R.Review article-dielectrophoresis:Status of the theory,technology,and applications.Biomicrofluidics,2010,4(2):022811
    35段欣悦.格子玻尔兹曼方法的理论研究与应用.[硕士论文].青岛:中国石油大学(华东),2006(Duan Xinyue.Theory study and application of Lattice-Boltzmann Method.[Master Thesis].Qingdao:China University of Petroleum,2006(in Chinese))
    36郭照立,郑楚光.格子Boltzmann方法的原理及应用.北京:科学出版社,2009(Guo Zhaoli,Zheng Chuguang.Principle and application of lattice Boltzmann method.Beijing:Science Press,2009(in Chinese))
    37 Hardy J,Pomeau Y,Pazzis OD.Time evolution of a twodimensional model system.I.Invariant states and time correlation functions.Journal of Mathematical Physics,1973,14(12):1746-1759
    38 Frisch U,Hasslacher B,Pomeau Y.Lattice-gas automata for the Navier-Stokes equation.Physical Review Letters,1986,56(14):1505-1508
    39 Frisch U,D’Hμmieres D,Hasslacher B,et al.Lattice gas hydmdynamics in two and three dimensions.Complex Systems,1987,1:649-707
    40 Mcnamara GR,Zanetti G.Use of the Boltzmann equation to simulate lattice gas automata.Physical Review Letters,1988,61(20):2332
    41 Frisch.U,Hasslacher B,Pomeau Y.Lattice-gas automata for the NavierStokes equation.Physical Review Letters,1986,6(14):1505-1508
    42 McNamara GR,Zanetti G.Use of the Boltzmann equation to simulate lattice-gas automata.Physical Review Letters,1988,61(20):2332-2335
    43 Succi S.The Lattice Boltzmann Equation-For Fluid Dynamics and Beyond.Oxford:Clarendon Press,2001
    44李彦浩,程永光.用多松弛格子Boltzmann方法模拟三维水击波.武汉大学学报(工学版),2013,46(4):417-422(Li Yanhao,Chen Yongguang.Three-dimensional simulation of water hammer wave by multiple-relaxtion-time lattice Boltzmann method.Engineering Journal of Wuhan University,2013,46(4):417-422(in Chinese))
    45 Zhou T,Li XM,Liu F.MRT-LBM analysis of acoustic streaming in standing waves between two-dimensional flat plates.Journal of Computational Physics,2018,35(1):39-46
    46 Guo ZL,Shu C.Lattice Boltzmann Method and Its Applications in Engineering.World Scientific,2013
    47张培杰,林建忠.非牛顿流体固粒悬浮流的若干问题.力学学报,2017,49(3):543-549(Zhang Peijie,Lin Jianzhong.Review of some researches on suspension of solid particle in non-newtonian fluid.Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):543-549(in Chinese))
    48陈荣前,聂德明.椭圆颗粒在剪切流中旋转特性的数值研究.力学学报,2017,49(2):257-267(Chen Rongqian,Nie Deming.Numerical study on the rotation of elliptical particle in shear flow.Chinese Journal of Theoretical and Applied Mechanics,2017,49(2):257-267(in Chinese))
    49 Merle CP,Davide CW.Mechanics of fluids(3rd ed).Beijing:China Machine Press,2003
    50 Danial NN,Korsmeyer SJ.Cell death:Critical control points.Cell,2004,116(2):205-219
    51郭超凡,王云阳.蛋白质物理改性的研究进展.食品安全质量检测学报,2017,8(2):428-433(Guo Chaofan,Wang Yunyang.Research progress on physical modification methods of protein.Journal of Food Safety and Quality,2017,8(2):428-433(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700