用户名: 密码: 验证码:
西部典型煤矿区水体污染遥感监测应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research of the Application of Remote Sensing Technology in Monitoring Water Pollution Caused by Coal Suspended Matter in Typical Coal Mining Areas of Western China
  • 作者:王喆 ; 余江宽 ; 路云阁
  • 英文作者:WANG Zhe;YU Jiang-kuan;LU Yun-ge;China Aero Geophysical Survey and Remote Sensing Center for Land and Resources;
  • 关键词:西部煤矿区 ; 悬浮物 ; 水体污染 ; 遥感监测 ; 哨兵2号
  • 英文关键词:coal mining areas of western China;;suspended matter;;water pollution;;remote sensing reflectance;;Sentienl-2A
  • 中文刊名:NCST
  • 英文刊名:Journal of Ecology and Rural Environment
  • 机构:中国国土资源航空物探遥感中心;
  • 出版日期:2019-04-28 10:31
  • 出版单位:生态与农村环境学报
  • 年:2019
  • 期:v.35;No.172
  • 基金:国家科技基础性工作专项(2014FY110800)
  • 语种:中文;
  • 页:NCST201904018
  • 页数:7
  • CN:04
  • ISSN:32-1766/X
  • 分类号:132-138
摘要
利用Sentienl-2A(哨兵2号)和ZY-3(资源三号)卫星数据,通过高空间分辨率目视解译与短波红外(SWIR)经验模型相结合的方法,对神东和准格尔2个西部典型煤矿区内煤尘水体污染开展提取分类和统计分析。结果表明,无论是在井工开采为代表的神东矿区还是露天开采为代表的准格尔矿区,煤矿开采活动造成的地表水体污染均十分严重,其中神东矿区污染水体面积占总地表水体的比例约为86. 44%,准格尔矿区污染水体面积占总地表水体的比例约为74. 82%;造成水体污染的主要因素为煤尘颗粒和洗煤废水,矿区内部水体、周边水系、黄河干流呈现轻度至重度污染,临近矿区、流动性差、循环慢的水体污染情况更严重。该方法优于传统目视解译,其人为干预少,理论依据明确,可快速开展定性评价,能在宏观层面为矿区管理者提供指导,可用于煤矿区开展长期动态监测。
        Based on the data of satellites Sentienl-2 A and ZY-3,the study used the method combining visual interpretation with high spatial resolution and SWIR empirical model to extract,sort and do statistical analysis of the water pollution caused by coal suspended matter in two typical mining areas of western China,Shendong and Zhungeer. The results show that the water pollution is quite serious both in surface mining and underground mining areas. Polluted water in Shendong coal mining area accounts for 86. 44%,while that in Zhungeer coal mining area represents 74. 84%. The main factors resulting in water pollution are coal dust and coal-washing wastewater. Water bodies within coal mining areas,of nearby river systems and even in parts of the Yellow River near Zhungeer coal mining area are polluted from slight to serious degrees. Meanwhile,water bodies which are close to coal mining areas with weak mobility and slow circulation are more easily polluted. The method used in this paper is better than traditional visual interpretation analysis used in periodic monitoring in coal mining areas,because it does not need much human intervention and has a reliable basic theory. It can assess the condition of water bodies rapidly and provide information for regulators.
引文
[1]钱鸣高.煤炭产能扩张引发中西部环境隐忧[J].资源环境与发展,2011(4):4-7,35.
    [2]张发旺,赵红梅,宋亚新,等.神府东胜矿区采煤塌陷对水环境影响效应研究[J].地球学报,2007,28(6):521-527.[ZHANG Fa-wang,ZHAO Hong-mei,SONG Ya-xin,et al. The Effect of Coal-Mining Subsidence on Water Environment in the Shenfu-Dongsheng Mining Area[J]. Acta Geoscientica Sinica,2007,28(6):521-527.]
    [3]吴磊,马孝义.黄土高原水土流失型非点源污染过程模拟研究进展[J].中国科技论文,2015,10(13):1497-1506.[WU Lei,MA Xiao-yi. Research Progress in Erosion-Type Nonpoint Source Pollution Process Simulation of the Loess Plateau[J]. China Science Paper,2015,10(13):1497-1506.]
    [4]李根,毛锋.我国水土流失型非点源污染负荷及其经济损失评估[J].中国水土保持,2008(2):9-11.
    [5]姚维岭,余江宽,路云阁.基于ZY-3卫星数据的神东煤矿区土地退化人为影响因素调查与评价[J].生态与农村环境学报,2016,32(3):355-360.[YAO Wei-ling,YU Jiang-kuan,LU Yun-ge. Investigation and Assessment of Artificial Influencing Factors of Land Degradation in Shendong Coal Mining Area Based on ZY-3 Satellite Data[J]. Journal of Ecology and Rural Environment,2016,32(3):355-360.]
    [6]王艳红,邓正栋,马荣华.基于实测光谱与MODIS数据的太湖悬浮物定量估测[J].环境科学学报,2007,27(3):509-515.[WANG Yan-hong,DENG Zheng-dong,MA Rong-hua. Suspended Solids Concentration Estimation in Lake Taihu Using Field Spectra and MODIS Data[J]. Acta Scientiae Circumstantiae,2007,27(3):509-515.]
    [7]郑超蕙,刘雪华,何炜琪,等.五类水体污染物质的偏振高光谱遥感实验研究[J].遥感信息,2008,23(3):15-21.[ZHENG Chao-hui,LIU Xue-hua,HE Wei-qi,et al. Recognizing Pollutant in Water by High-Spectral Reflectance and Polarization Information[J]. Remote Sensing Information,2008,23(3):15-21.]
    [8]万余庆,张凤丽,闫永忠.高光谱遥感技术在水环境监测中的应用研究[J].国土资源遥感,2003,13(3):10-14.[WAN Yu-qing,ZHANG Feng-li,YAN Yong-zhong. The Application of the Hyperspectral Remote Sensing Technology to Water Envionment Monitoring[J]. Remote Sensing for Land&Resources,2003,13(3):10-14.]
    [9]马利英,武艺,徐磊,等.北盘江贵州段煤炭污染型河流水质污染现状分析[J].科技情报开发与经济,2011,21(14):141-144.[MA Li-ying,WU Yi,XU Lei,et al. Analysis on the Current Situation of the Coal Pollution of Beipanjiang River′s Guizhou Sector[J]. Science-Techlonogy Information Development&Economy,2011,21(14):141-144.]
    [10]何磊,童玲,李玉霞.昆承湖水质状况遥感监测与空间特征分析[J].测绘科学,2015,40(4):58-62.[HE Lei,TONG Ling,LI Yu-xia. Remote Sensing Monitoring and Spatial Character Analysis for Water Quality of Kuncheng Lake[J]. Science of Surveying and Mapping,2015,40(4):58-62.]
    [11] CAROLINE P,GUILLEM C,FRANCIS G,et al. Estimating Turbidity and Total Suspended Matter in the Adour River Plume(South Bay of Biscay)Using MODIS 250 m Imagery[J]. Continental Shelf Research,2010,30(5):379-392.
    [12]施坤,李云梅,刘忠华,等.基于半分析方法的内陆湖泊水体总悬浮物浓度遥感估算研究[J].环境科学,2011,32(6):1571-1580.[SHI Kun,LI Yun-mei,LIU Zhong-yun,et al. Estimation of Total Suspended Matter Concentration Based on Semi-Analysis Algorithm in Inland Turbid Waters[J]. Environmental Science,2011,32(6):1571-1580.]
    [13]杨婧茹,臧淑英,惠洪宽.松花江哈尔滨段总悬浮物浓度高光谱估测模型研究[J].安全与环境学报,2014,14(2):239-243.[YANG Jing-ru,ZANG Shu-ying,HUI Hong-kuan. An Hyperspectral Estimation Model for Testing the Total Suspended Solid Concentration in Harbin Section of Songhua River[J]. Journal of Safety and Environment,2014,14(2):239-243.]
    [14]孙德勇,李云梅,黄家柱,等.太湖梅梁湾夏季水体组分光谱吸收特性[J].生态学报,2008,28(2):749-760.[SUN De-yong,LI Yun-mei,HUANG Jia-zhu,et al. Spectral Absorption Characteristics and Slope Coefficients Analysis of In-Water Constituents in Meiliang Bay of Lake Taihu in the Summer Season[J]. Acta Ecologica Sinica,2008,28(2):749-760.]
    [15]孙德勇,李云梅,王桥,等.基于实测高光谱的太湖水体悬浮物浓度遥感估算研究[J].红外与毫米波学报,2009,28(2):124-128.[SUN De-yong,LI Yun-mei,WANG Qiao,et al. Study on Remote Sensing Estimation of Suspended Matter Concentration Based on in situ Hyperspectral Data in Lake Tai Waters[J].Journal of Infrared and Millimeter Waves, 2009,28(2):124-128.]
    [16] DZ/T 0266—2014,矿产资源开发遥感监测技术规范[S].[DZ/T 0266-2014,Regulation on Remote Sensing Monitoring of Mining Exploration[S].]
    [17] KAIRE T,TIIT K,ALO L,et al. First Experiences in Mapping Lake Water Quality Parameters With Sentinel-2 MSI Imagery[J].Remote Sensing,2016,8(8):640. DOI:10. 3390/rs8080640.
    [18] VITOR S M,CLAUDIO C F B,LINO A S D C,et al. Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes[J]. Remote Sensing,2017,9(4):322. DOI:10. 3390/rs9040322.
    [19] KUSER T,PAAVEL B,VERPOORTER,et al. Remote Sensing of Black Lakes and Using 810 nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters[J]. Remote Sensing,2016,8(6):497. DOI:10. 3390/rs8060497.
    [20] MCFEETERS S K. The Use of the Normalized Difference Water Index(NDWI)in the Delineation of Open Water Features[J].International Journal of Remote Sensing,1996,17(7):1425-1432.
    [21]徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595.[XU Han-qiu. A Study on Information Extraction of Water Body With the Modified Normalized Difference Water Index(MNDWI)[J].Journal of Remote Sensing,2005,9(5):589-595.]
    [22]万余庆,张凤丽,闫永忠.利用细分光谱仪数据分析水体泥土含量的方法研究[J].国土资源遥感,2002,12(2):51-55.[WAN Yu-qing,ZHANG Feng-li,YAN Yong-zhong. The Methodological Research of Using Spectrometer Data to Predict Soil Content of Water[J]. Remote Sensing for Land&Resources,2002,12(2):51-55.]
    [23] YANG Xiu-cheng,ZHAO Shan-shan,QIN Xue-bin,et al. Maping of Urban Surface Water Bodies From Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening[J]. Remote Sensing,2017,9(6):596. DOI:10. 3390/rs9060596.
    [24] DU Y,ZHANG Y H,LING F,et al. Water Bodies′Mapping From Sentinel-2 Imagery With Modified Normalized Difference Water Index at 10 m Spatial Resolution Produced by Sharpening the SWIR Band[J]. Remote Sensing,2016,8(4):354. DOI:10. 3390/rs8040354.
    [25]王爱华,姜小三,潘剑君. CBERS与TM在水体污染遥感监测中的比较研究[J].遥感信息,2008,23(2):46-50.[WANG Ai-hua,JIANG Xiao-san,PAN Jian-jun. Comparative Study Between CBERS and TM Data in Water Pollution Remote Sensing Monitoring[J]. Remote Sensing Information,2008,23(2):46-50.]
    [26]汪小钦,王钦敏,刘高焕,等.水污染遥感监测[J].遥感技术与应用,2002,17(2):74-77.[WANG Xiao-qin,WANG Qin-min,LIU Gao-huan,et al. Water Pollution Monitoring Using Remote Sensing[J]. Remote Sensing Technology and Application,2002,17(2):74-77.]
    [27]马跃良,王云鹏,贾桂梅.珠江广州河段水体污染的遥感监测应用研究[J].重庆环境科学,2003,25(3):13-16.
    [28]李强,李永春,陈大勇,等.神东矿区水资源可持续利用问题研究[J].干旱区资源与环境,2013,27(9):141-147.[LI Qiang,LI Yong-chun,CHEN Da-yong,et al. The Water Resource Utilization in Shendong Mining Area[J]. Journal of Arid Land Resources and Environment,2013,27(9):141-147.]
    [29]卫献群,刘福东.浅析内蒙古准格尔旗水资源保护与可持续利用[J].山西建筑,2010,36(4):362-363.[WEI Xian-qun,LIU Fu-dong. On Water Resource Protection of Zhungeerqi in Inner Mongolia and Its Sustainable Utilization[J]. Shanxi Architecture,2010,36(4):362-363.]
    [30]卢洁,雷少刚.露天煤矿粉尘环境影响及其扩散规律研究综述[J].煤矿安全,2017,48(8):231-234.[LU Jie,LEI Shao-gang. Research Overview of Effect of Dust on Environment and Its Diffusion Laws in Open-Pit Coal Mine[J]. Safety in Coal Mines,2017,48(8):231-234.]
    [31]贾楠.高浓度洗煤废水处理与回用技术研究[J].科技与企业,2012(5):138-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700