用户名: 密码: 验证码:
含相变材料热防护结构一体化设计与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Experimental Investigation of Integrated Thermal Protection Structure Containing Phase Change Material Layer
  • 作者:曹晨宇 ; 王睿星 ; 邢晓冬 ; 宋宏伟 ; 黄晨光
  • 英文作者:CAO Chen-yu;WANG Rui-xing;XING Xiao-dong;SONG Hong-wei;HUANG Chen-guang;School of Mechanical and Electrical Engineering, Harbin Engineering University;Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics,Chinese Academy of Sciences;
  • 关键词:一体化热防护结构 ; 隔热性能 ; 热应力 ; 定形相变材料 ; 轻量化设计
  • 英文关键词:Integrated thermal protection system;;Thermal protection performance;;Thermal stress analysis;;Form-stable phase change material;;Lightweight optimization design
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:哈尔滨工程大学机电工程学院;中国科学院力学研究所流固耦合系统力学重点试验室;
  • 出版日期:2019-03-30
  • 出版单位:宇航学报
  • 年:2019
  • 期:v.40
  • 基金:国防基础科研重点项目(JCKY2016130B009);; 国家自然科学基金(91016025,11472276,11332011)
  • 语种:中文;
  • 页:YHXB201903014
  • 页数:10
  • CN:03
  • ISSN:11-2053/V
  • 分类号:110-119
摘要
利用相变材料储热密度大、比热容高等优势,设计了一种含相变材料的新型一体化热防护结构(PCM-ITPS),并通过数值计算分析了其隔热特性。结果表明,在一体化热防护结构底板处铺设相变材料可吸收热短路效应导入的过量热载,改善结构的隔热性能。然后设计并制备PCM-ITPS试验件,通过隔热性能测试试验对结构隔热特性进行验证。在此基础上进行热应力分析验证其承载性能,并以结构参数为设计变量,隔热和承载性能要求为约束条件,实现了PCM-ITPS结构的轻量化设计,优化后PCM-ITPS方案相对传统ITPS方案减重23.35%。以上工作为促进热防护系统的设计-制造一体化进程提供必要的理论储备与技术支持。
        This paper designs a new type of ITPS containing phase change material layer(PCM-ITPS). The numerical simulation is conducted to discuss the impact of the PCM on the thermal protection performance, and the PCM-ITPS unit cell test samples are manufactured to test the thermal protection performance. Both numerical simulation and test results prove the excellent thermal protection performance of the PCM-ITPS. On this basis, the thermal stress finite element simulation of the model is completed to verify its mechanical performance. Furthermore, the platform for the automatic design and optimization is built for the PCM-ITPS. With the structural dimensional parameters as the design parameters and the performance requirements as the constraints, the lightweight design of the integrated thermal structure is accomplished. As a result, the mass of the optimized PCM-ITPS is reduced by 23.35% compared with the optimized traditional ITPS. In conclusion, this work is able to provide the theoretical and technical support for the integrated design and manufacturing processes of a thermal protection system.
引文
[1] 黄伟,罗世彬,王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5):1259-1265.[Huang Wei, Luo Shi-bin, Wang Zhen-guo. Key technologies and prospects of space hypersonic vehicles[J]. Journal of Astronautics, 2010, 31(5): 1259-1265.]
    [2] 李锌,艾邦成,姜贵庆. 一种热平衡等温机制的新型热防护及相关技术[J]. 宇航学报, 2013, 34(12):1644-1650. [Li Xin, Ai Bang-cheng, Jiang Gui-qing. A new thermal protection and related technology for thermal equilibrium isothermal mechanism[J]. Journal of Astronautics, 2013, 34(12): 1644-1650.]
    [3] 王琪,吉庭武,谢公南,等. 轻质热防护系统波纹夹芯结构热力耦合分析[J]. 应用数学和力学, 2013, 34(2):172-182. [Wang Qi, Ji Ting-wu, Xie Gong-nan, et al. Thermal coupling analysis of corrugated sandwich structures for lightweight thermal protection systems[J]. Applied Mathematics and Mechanics, 2013, 34(2): 172-182]
    [4] Villanueva D C, Riche R L, Picard G, et al. Dynamic Design Space Partitioning for Optimization of an Integrated Thermal Protection System[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013.
    [5] 解维华,霍施宇,杨强,等. 新型一体化热防护系统热力分析与试验研究[J]. 航空学报, 2013, 34(9):2169-2176. [Xie Wei-hua, Huo Shi-yu, Yang Qiang, et al. Thermodynamic analysis and experimental study of a new integrated thermal protection system[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2169-2176.]
    [6] Kumar S, Haftka R, Sankar B. Probabilistic Optimization of Integrated Thermal Protection System[C]//AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2013.
    [7] Bapanapalli S K. Design of an integral thermal protection system for future space vehicles[M]. 2007.
    [8] Johnson S,Gasch M,Dan L,et al.Development of New TPS at NASA Ames Research Center[C]//AIAA International Space Planes and Hypersonic Systems and Technologies Conference,2013.
    [9] 胡兆财. 一体化热防护系统梯度腹板的设计与材料制备[D]. 哈尔滨工业大学, 2016. [Hu Zhao-cai. Gradient web design and material preparation for integrated thermal protection system [D]. Harbin Institute of Technology, 2016.]
    [10] 孟松鹤,杨强,霍施宇,等. 一体化热防护技术现状和发展趋势[J]. 宇航学报, 2013, 34(10):1295-1302 [Meng Song-he, Yang Qiang, Huo Shi-yu, et al. Status and development trend of integrated thermal protection technology[J]. Journal of Astronautics, 2013, 34(10): 1295-1302].
    [11] Daryabeigi K, Splinter S, Knutson J. Characterization of Structurally Integrated TPS for Hypersonic Vehicles[J].
    [12] Pichon T, Soyris P, Foucault A, et al. Thermal Protection Systems Technologies For Re-Entry Vehicles[C]//Aiaa/ahi Space Planes and Hypersonic Systems and Technologies Conference. 2013.
    [13] 王琦. 基于仿生观念的轻质薄壁结构隔热承载一体化设计[D]. 大连理工大学, 2011.[Wang Qi. Integrated design of thermal insulation and load bearing of lightweight thin-wall structure based on bionic concept [D]. Dalian University of Technology, 2011.]
    [14] 杨强. 一体化热防护系统设计与综合效能评估方法研究[D]. 哈尔滨工业大学, 2013.[ Yang Qiang. Research on integrated thermal protection system design and comprehensive effectiveness evaluation method [D]. Harbin Institute of Technology, 2013]
    [15] 王爱华,任建勋,梁新刚. 等热流条件下相变导热仿生优化[J]. 宇航学报, 2005, 26(2):239.[Wang Ai-hua, Ren Jian-xun, Liang Xin-gang. Phase-change thermal conductivity bionic optimization under isothermal flow conditions[J]. Journal of Astronautics, 2005, 26(2): 239.]
    [16] 周祥发,冯坚,肖汉宁,等. 二氧化硅气凝胶隔热复合材料的性能及其瞬态传热模拟[J]. 国防科技大学学报, 2009, 31(2):36-40. [Zhou Xiang-fa, Feng Jian, Xiao Han-ning, et al. Performance and transient heat transfer simulation of silica aerogel thermal insulation composites[J]. Journal of National University of Defense Technology, 2009, 31(2):36-40]
    [17] 李东辉,夏新林. 金属热防护系统瞬态传热数值模拟方法研究[J]. 宇航学报, 2009, 30(3):1195-1200.[ Li Dong-hui, Xia Xin-lin. Research on numerical simulation method of transient heat transfer in metal thermal protection system[J]. Journal of Astronautics, 2009, 30(3): 1195-1200.]
    [18] Sar? A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27(8):1271-1277.
    [19] Sobolciak P, Karkri M, Al-Maadeed M A, et al. Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite[J]. Renewable Energy, 2016, 88:372-382.
    [20] 叶福丽,李凯扬,史贵连. 基于多岛遗传算法的生物组织三维温度场重构研究[J]. 生物医学工程学杂志, 2016, 33(4):666-673.[Ye Fu-li, Li Kai-yang, Shi Gui-lian. Research on three-dimensional temperature field reconstruction in biological tissue based on multi-island genetic algorithm[J]. Journal of Biomedical Engineering, 2016, 33(4):666-673.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700