用户名: 密码: 验证码:
高强度硬质阻燃密胺泡沫材料的制备与性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Performance of High-Strength Flame Retardant Rigid Melamine Foam Materials
  • 作者:王雪帆 ; 马海红 ; 宋聪 ; 周正发 ; 徐卫兵 ; 任凤梅 ; 周淑千
  • 英文作者:Xuefan Wang;Haihong Ma;Congqiang Song;Zhengfa Zhou;Weibing Xu;Fengmei Ren;Shuqian Zhou;School of Chemistry and Chemical Engineering, Hefei University of Technology;
  • 关键词:压缩强度 ; 阻燃 ; 密胺泡沫 ; 改性剂 ; 柠檬酸
  • 英文关键词:compressive strength;;flame retardancy;;melamine foam;;modifier;;citric acid
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:合肥工业大学化学与化工学院;
  • 出版日期:2019-03-11 14:30
  • 出版单位:高分子材料科学与工程
  • 年:2019
  • 期:v.35
  • 基金:中央高校基本科研业务费专项资金资助项目(JZ2017YYPY0241,JD2016JGPY002)
  • 语种:中文;
  • 页:GFZC201902026
  • 页数:7
  • CN:02
  • ISSN:51-1293/O6
  • 分类号:158-164
摘要
采用微波辐射发泡的方法制备密胺泡沫材料,在密胺树脂发泡液中分别加入硼酸、淀粉、草酸、柠檬酸等改性剂,研究了改性剂种类和含量与泡沫形貌、表观密度、吸水率、压缩强度、热稳定性及阻燃性之间的关系。实验结果表明,当改性剂用量为10%时,硼酸改性密胺泡沫的半寿温度(T_(50%))最高,达到484℃;淀粉改性密胺泡沫的初始分解温度(T_(5%))最高,达到207℃;草酸改性密胺泡沫的表观密度最低,为78.13 kg/m~3,最大失重速率温度最高,达到411℃;柠檬酸改性密胺泡沫泡孔形貌最好,闭孔结构最多,吸水率最低,压缩强度最高,极限氧指数(LOI)最高。综合分析,10%柠檬酸改性密胺泡沫的综合性能最佳,其表观密度为108 kg/m~3,吸水率为21.33%,压缩强度达到258 kPa,残炭率为12.94%,LOI达到34.3%。
        The melamine foam materials were prepared via microwave radiation. Modifiers such as boric acid, starch, oxalic acid and citric acid were added into the foaming liquid to adjust the performance of the melamine foam materials. The influences of the type and content of modifiers on morphology, apparent density, water absorption ratio, compressive strength, thermal stability and flame retardancy of melamine foam were studied. The results show that when the content of modifier is 10%, the melamine foam modified with boric acid exhibits the highest half-life temperature(T_(50%)) of 484 ℃. Moreover, the melamine foam modified with starch show the highest initial decomposition temperature(T_(5%)) of 207 ℃, and the melamine foam modified with oxalic acid exhibits the lowest apparent density of 78.13 kg/m~3 and highest mass loss rate temperature of 411 ℃. The melamine foam modified with citric acid exhibits the excellent morphology with the largest closed cell structure, lowest water absorption ratio, highest compressive strength and the highest limiting oxygen index. Overall, the melamine foam modified with 10% citric acid shows the best comprehensive performance with the apparent density of 108 kg/m~3, water absorption ratio of 21.33%, compressive strength of 258 kPa, residual carbon rate of 12.94% and limiting oxygen index of 34.3%.
引文
[1] Li Q, Chen L, Zhang J, et al. Enhanced mechanical properties, thermal stability of phenolic formaldehyde foam/silica nanocomposites via in situ polymerization[J]. Polym. Eng. Sci., 2015, 55: 2783-2793.
    [2] 闫莉,刘娟,李青芳,等. 含磷本质阻燃硬质聚氨酯泡沫塑料的制备及性能[J]. 高分子材料科学与工程,2017,33(7): 6-10. Yan L, Liu J, Li Q F, et al. Preparation and properties of phosphorus-containing intrinsic flame retardant rigid polyurethane foam[J]. Polymer Materials Science & Engineering, 2017, 33(7): 6-10.
    [3] 陈东,段成,杜中杰,等. 密胺树脂多孔材料的制备及对二氧化碳的吸附[J]. 高分子材料科学与工程,2017,33(2): 39-43. Chen D, Duan C, Du Z J. et al. Preparation and CO2 adsorption of porous melamine materials[J]. Polymer Materials Science & Engineering, 2017, 33(2): 39-43.
    [4] Liu Y L, Zhao X W, Ye L. A novel elastic urea-melamine-formaldehyde foam: structure and properties[J]. Ind. Eng. Chem. Res., 2016, 55: 8743-8750.
    [5] Wang D W, Zhang X X, Luo S, et al. Preparation and property analysis of melamine formaldehyde foam[J]. Adv. Mater. Phys. Chem., 2012, 2: 63-67.
    [6] Nemanic V, Zajec B, Zumer M, et al. Synthesis and characterization of melamine-formaldehyde rigid foams for vacuum thermal insulation[J]. Appl. Energy, 2014, 114: 320-326.
    [7] Zhang Y S, Duan H D, Wang X J, et al. Preparation and properties of composites based on melamine-formaldehyde foam and nano-Fe3O4[J]. J. Appl. Polym. Sci., 2013, 130: 2688-2697.
    [8] 马海红. 一种高闭孔率密胺泡沫预聚物及其制备方法:中国,106589274A[P]. 2017-04-26.
    [9] Zhou S Q, Zhou Z F, Ji C R, et al. Formation mechanism of thermally expandable microspheres of PMMA encapsulating NaHCO3 and ethanol via thermally induced phase separation[J]. RSC Adv., 2017, 7: 50603-50609.
    [10] Cheng Y, Li J, He Y, et al. Acidic buffer mechanism of cyclotriphosphazene and melamine cyanurate synergism system flame retardant epoxy resin[J]. Polym. Eng. Sci., 2015, 55: 1046-1051.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700