用户名: 密码: 验证码:
低温SNAD颗粒污泥工艺启动方式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Startup Strategies for the SNAD Granular Sludge Process at Low Temperature
  • 作者:李冬 ; 崔雅倩 ; 赵世勋 ; 刘志诚 ; 张杰
  • 英文作者:LI Dong;CUI Ya-qian;ZHAO Shi-xun;LIU Zhi-cheng;ZHANG Jie;Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering,College of Architecture and Civil Engineering,Beijing University of Technology;State Key Laboratory of Urban Water Resource and Environment,School of Environment,Harbin Institute of Technology;
  • 关键词:同步短程硝化、厌氧氨氧化与反硝化(SNAD) ; 颗粒污泥 ; 启动方式 ; 低温
  • 英文关键词:simultaneous partial nitrification,ANAMMOX,and denitrification(SNAD);;granular sludge;;startup strategies;;low temperature
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:北京工业大学建筑工程学院水质科学与水环境恢复工程北京市重点实验室;哈尔滨工业大学环境学院城市水资源与水环境国家重点实验室;
  • 出版日期:2018-08-22 21:20
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金优秀青年科学基金项目(51222807)
  • 语种:中文;
  • 页:HJKZ201901046
  • 页数:7
  • CN:01
  • ISSN:11-1895/X
  • 分类号:378-384
摘要
为研究启动方式对同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺的影响,低温(12.7~18.3℃)条件下,R1和R2反应器分别通过先启动全程自养脱氮(CANON)工艺和先启动厌氧氨氧化耦合反硝化(SAD)工艺的方式逐步启动SNAD颗粒污泥工艺.结果表明,R1反应器启动成功后,氨氮几乎完全去除,总氮去除率达到86.7%.低氨氮浓度运行时,出水总氮去除率下降至75.3%,出水总氮浓度在10 mg·L~(-1)左右,NOB存在过量增殖现象,出水总氮浓度超过北京市水污染物排放标准一级A规定.R2反应器启动成功后,出水几乎不含氨氮,总氮去除率在89.1%左右,略高于R1反应器.低氨氮浓度运行时,出水氨氮浓度小于1.0 mg·L~(-1),出水总氮浓度小于6 mg·L~(-1),出水氨氮和总氮浓度满足地标一级A标准.先启动SAD工艺可以在启动初期通过厌氧运行将NOB逐渐淘汰出系统内,维持了系统的稳定性,为后续曝气启动SNAD工艺提供了良好的基础,维持了反应器的稳定运行,实现出水总氮长期排放达标.
        To study the effect of the startup strategies on the simultaneous partial nitrification,ANAMMOX,and denitrification(SNAD) granular sludge processes,these processes were initiated by starting the completely autotrophic nitrogen removal over nitrite(CANON) process and anaerobic ammonia oxidation-denitrification(SAD) process at 12.7℃ and 18.3℃,respectively.The results show that the ammonia nitrogen was almost completely removed and the total nitrogen removal rate reached 86.7% after the R1 reactor was successfully started.When the ammonia concentration was low,the total nitrogen removal rate in the effluent decreased to 75.3%,the total nitrogen concentration in the effluent was ~ 10 mg·L~(-1),and excessive proliferation of the NOB was observed.The total nitrogen concentration in the effluent exceeded the 1 A level of the integrated discharge standard of water pollutants applied in Beijing City.After the R2 reactor was successfully started,the effluent contained almost no ammonia nitrogen and the total nitrogen removal rate was ~ 89.1%,that is,slightly higher than that of the R1 reactor.When the ammonia concentration was low,the concentration of ammonia nitrogen in effluent was less than 1.0 mg·L~(-1) and the total nitrogen concentration in the effluent was less than 6 mg·L~(-1).The concentrations of ammonia nitrogen and total nitrogen in the effluent reached the 1 A level of the integrated discharge standard of water pollutants applied in Beijing City.First,the startup of the SAD process gradually eliminated the NOB from the system through anaerobic operation in the initial stage of the startup,maintained the stability of the system,provided a good basis for the subsequent aeration to start the SNAD process,maintained the stable operation of the reactor,and the long-term discharge of total nitrogen reached the standard.
引文
[1]Chen H H,Liu S T,Yang F L,et al.The development o simultaneous partial nitrification,ANAMMOX and denitrification(SNAD)process in a single reactor for nitrogen removal[J].Bioresource Technology,2009,100(4):1548-1554.
    [2]Van Hulle S W H,Vandeweyer H J P,Meesschaert B D,et al.Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams[J].Chemical Engineering Journal,2010,162(1):1-20.
    [3]Strous M,Kuenen J G,Jetten M S M.Key physiology of anaerobic ammonium oxidation[J].Applied and Environmental Microbiology,1999,65(7):3248-3250.
    [4]Dosta J,Fernández I,Vázquez-Padín J R,et al.Short-and longterm effects of temperature on the Anammox process[J].Journal of Hazardous Materials,2008,154(1-3):688-693.
    [5]姚俊芹,刘志辉,周少奇.温度变化对厌氧氨氧化反应的影响[J].环境工程学报,2013,7(10):3993-3996.Yao J Q,Liu Z H,Zhou S Q.Influence of temperature change on anaerobic ammonia oxidation reaction[J].Chinese Journal of Environmental Engineering,2013,7(10):3993-3996.
    [6]Strous M,Heijnen J J,Kuenen J G,et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [7]Jetten M S M,Strous M,van de Pas-Schoonen K T,et al.The anaerobic oxidation of ammonium[J].FEMS Microbiology Reviews,1998,22(5):421-437.
    [8]唐崇俭,郑平,陈建伟.流加菌种对厌氧氨氧化工艺的影响[J].生物工程学报,2011,27(1):1-8.Tang C J,Zheng P,Chen J W.Effect of sequential biocatalyst addition on Anammox process[J].Chinese Journal of Biotechnology,2011,27(1):1-8.
    [9]Dapena-Mora A,Campos J L,Mosquera-Corral A,et al.Stability of the ANAMMOX process in a gas-lift reactor and a SBR[J].Journal of Biotechnology,2004,110(2):159-170.
    [10]Chen J W,Ji Q X,Zheng P,et al.Floatation and control of granular sludge in a high-rate anammox reactor[J].Water Research,2010,44(11):3321-3328.
    [11]Chen J W,Zheng P,Yu Y,et al.Promoting sludge quantity and activity results in high loading rates in Anammox UBF[J].Bioresource Technology,2010,101(8):2700-2705.
    [12]Isaka K,Sumino T,Tsuneda S.High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions[J].Journal of Bioscience and Bioengineering,2007,103(5):486-490.
    [13]Tang C J,Zheng P,Wang C H,et al.Performance of highloaded ANAMMOX UASB reactors containing granular sludge[J].Water Research,2011,45(1):135-144.
    [14]Thiele J H,Wu W M,Jain M K,et al.Ecoengineering high rate anaerobic digestion systems:analysis of improved syntrophic biomethanation catalysts[J].Biotechnology and Bioengineering,1990,35(10):990-999.
    [15]刘涛,李冬,曾辉平,等.氨氮浓度对CANON工艺功能微生物丰度和群落结构的影响[J].环境科学,2013,34(2):773-780.Liu T,Li D,Zeng H P,et al.Assessment of the effect of influent NH+4-N concentration on the abundance and community structure of functional bacteria in CANON process[J].Environmental Science,2013,34(2):773-780.
    [16]完颜德卿,袁怡,李祥,等.一种CANON工艺处理低氨氮废水的新模式[J].环境科学,2017,38(3):1122-1129.Wanyan DQ,Yuan Y,Li X,et al.A new model for the treatment of low ammonia nitrogen wastewater by CANON process[J].Environmental Science,2017,38(3):1122-1129.
    [17]张艳辉,李冬,梁瑜海,等.缺氧/好氧比对连续流半亚硝化稳定性的影响[J].中国环境科学,2016,36(6):1724-1731.Zhang Y H,Li D,Liang Y H,et al.Influence of anoxic/aerobic ratio on stability of partial nitritation in a continuous flow process[J].China Environmental Science,2016,36(6):1724-1731.
    [18]Liu G Q,Wang J M.Long-term low DO enriches and shifts nitrifier community in activated sludge[J].Environmental Science&Technology,2013,47(10):5109-5117.
    [19]李冬,赵世勋,关宏伟,等.常温低氨氮CANON工艺稳定性研究[J].中国环境科学,2017,37(1):102-107.Li D,Zhao S X,Guan H W,et al.Stable operation of CANONprocess at normal temperature and low ammonia concentration[J].China Environmental Science 2017,37(1):102-107.
    [20]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [21]Laanbroek H J,Gerards S.Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures[J].Archives of Microbiology,1993,159(5):453-459.
    [22]Hellinga C,Schellen A A J C,Mulder J W,et al.The sharon process:an innovative method for nitrogen removal from ammonium-rich waste water[J].Water Science and Technology,1998,37(9):135-142.
    [23]Liu Y,Fang H H P.Influences of extracellular polymeric substances(EPS)on flocculation,settling,and dewatering of activated sludge[J].Critical Reviews in Environmental Science and Technology,2003,33(3):237-273.
    [24]Zhang Z Q,Xia S Q,Wang X J,et al.A novel biosorbent for dye removal:extracellular polymeric substance(EPS)of Proteus mirabilis TJ-1[J].Journal of Hazardous Materials,2009,163(1):279-284.
    [25]Liu Y,Lam M C,Fang H H P.Adsorption of heavy metals by EPS of activated sludge[J].Water Science and Technology:AJournal of the International Association on Water Pollution Research,2001,43(6):59-66.
    [26]Mc Swain B S,Irvine R L,Hausner M,et al.Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J].Applied and Environmental Microbiology,2005,71(2):1051-1057.
    [27]Tay J H,Liu Q S,Liu Y.The role of cellular polysaccharides in the formation and stability of aerobic granules[J].Letters in Applied Microbiology,2001,33(3):222-226.
    [28]Sanin S L,Sanin F D,Bryers J D.Effect of starvation on the adhesive properties of xenobiotic degrading bacteria[J].Process Biochemistry,2003,38(6):909-914.
    [29]曹剑锋,张鹏英,陈靠山.稀土钕元素的生物学效应及机制研究进展[J].植物生理学报,2010,46(4):325-328.Cao J F,Zhang P Y,Chen K S.Research advance of rare earth neodymium biological effects and mechanism[J].Plant Physiology Communications,2010,46(4):325-328.
    [30]Hou X L,Liu S T,Zhang Z T.Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge[J].Water Research,2015,75:51-62.
    [31]李惠娟,彭党聪,陈国燕,等.ANAMMOX的快速启动及EPS在ANAMMOX颗粒污泥中的空间分布[J].环境科学,2017,38(7):2931-2940.Li H J,Peng D C,Chen G Y,et al.Fast start-up of ANAMMOXand the spatial distribution of EPS in ANAMMOX granules[J].Environmental Science,2017,38(7):2931-2940.
    [32]陆佳,刘永军,刘喆,等.有机负荷对污泥胞外聚合物分泌特性及颗粒形成的影响[J].化工进展,2018,37(4):1616-1622.Lu J,Liu Y J,Liu Z,et al.Effects of organic loading on the secretory characteristics of EPS and particle formation[J].Chemical Industry and Engineering Progress,2018,37(4):1616-1622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700