用户名: 密码: 验证码:
硫自养反硝化耦合厌氧氨氧化脱氮条件控制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation
  • 作者:周健 ; 黄勇 ; 刘忻 ; 袁怡 ; 李祥 ; 完颜德卿 ; 丁亮 ; 邵经纬 ; 赵蓉
  • 英文作者:ZHOU Jian;HUANG Yong;LIU Xin;YUAN Yi;LI Xiang;WANGYAN De-qing;DING Liang;SHAO Jing-wei;ZHAO Rong;School of Environmental Science and Technology,Suzhou University of Science and Technology;Institute of Environmental Biotechnology,Suzhou University of Science and Technology;
  • 关键词:单质硫自养反硝化 ; 厌氧氨氧化 ; 耦合反应 ; 硫酸盐产生 ; 碱度消耗 ; 厌氧
  • 英文关键词:element sulfur-based autotrophic denitrification;;ANAMMOX;;coupled reaction;;sulfate production;;alkalinity consumption;;anaerobic
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:苏州科技学院环境科学与工程学院;苏州科技学院环境生物技术研究所;
  • 出版日期:2016-02-26 15:36
  • 出版单位:环境科学
  • 年:2016
  • 期:v.37
  • 基金:国家自然科学基金项目(51478284,51408387);; 苏州科技学院科研启动项目(331411202);苏州科技学院科研基金青年项目(XKQ201414)
  • 语种:中文;
  • 页:HJKZ201603038
  • 页数:9
  • CN:03
  • ISSN:11-1895/X
  • 分类号:275-283
摘要
采用全混式厌氧搅拌罐,研究自养条件下,厌氧氨氧化与硫自养反硝化共同存在时,前者对系统中硫酸盐的产生和碱度消耗的影响.投加单质硫颗粒50 g·L~(-1),接种厌氧氨氧化颗粒污泥100 g·L~(-1)(湿重),控制温度35℃±0.5℃,搅拌强度120r·min-1,p H为8.0~8.4.启动硫自养反硝化阶段,进水硝酸盐浓度为200 mg·L~(-1),水力停留时间为5.3 h,反应器硝态氮负荷达0.56~0.71 kg·(m~3·d)~(-1).硫自养反硝化耦合厌氧氨氧化反应过程中,添加60 mg·L~(-1)氨氮后,硝态氮负荷仍维持在0.66~0.88kg·(m~3·d)~(-1),氨氮负荷为0.27 kg·(m~3·d)~(-1).反应体系内单位硝酸盐转化产生的硫酸盐Δn(SO~(2-)_4)∶Δn(NO~-_3)由1.21±0.06降低至1.01±0.10,Δ(IC)∶Δ(NO~-_3-N)由0.72±0.1降低至0.51±0.11,出水p H值由6.5上升至7.2.序批试实验优化反应条件:在搅拌强度G_T值为22~64 s~(-1),p H值为8.08时,耦合反应Δn(NH~+_4)∶Δn(NO~-_3)最高达到0.43,硝酸盐转化速率提升60%,过高搅拌强度(搅拌速度G_T值>64 s~(-1))、不适宜的p H值(最适p H值为8.02)环境都会起同步转化效率的降低.
        A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process,reacted in CSTR,was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50g·L~(-1). The inoculation volume of ANAMMOX granular sludge was 100 g·L~(-1). The agitation rate and environment reaction temperature of the CSTR were set to 120 r·min- 1and 35℃ ± 0. 5℃,respectively. The p H of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification,the nitrogen removal loading rate could reach 0. 56-0. 71 kg·( m~3·d)~(-1)in the condition of 5. 3 h hydrogen retention time and 200 mg·L~(-1)nitrate nitrogen. After the addition of 60 mg·L~(-1)ammonia nitrogen,Δn( SO~(2-)_4) : Δn( NO~-_3) decreased from 1. 21 ± 0. 06 to 1. 01 ± 0. 10,Δ( IC) ∶ Δ( NO~-_3-N) decreased from 0. 72 ± 0. 1 to 0. 51 ± 0. 11,and the effluent p H increased from 6. 5 to 7. 2. During the combined stage,the ammonia concentration of effluent was 10. 1-19. 2mg·L~(-1),and the nitrate-nitrogen removal loading rate could be maintained in range of 0. 66-0. 88 kg·( m~3·d)~(-1). The Δn( NH~+_4) ∶ Δn( NO~-_3) ratio reached 0. 43,and the NO~-_3removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G_T= 22-64 s~(-1)and p H = 8. 08,while improper conditions reduced the efficiency of simultaneous reaction.
引文
[1]Ali M,Okabe S.Anammox-based technologies for nitrogen removal:advances in process start-up and remaining issues[J].Chemosphere,2015,141:144-153.
    [2]Van Hulle S W H,Vandeweyer H J P,Meesschaert B D,et al.Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams[J].Chemical Engineering Journal,2010,162(1):1-20.
    [3]Abma W R,Schultz C E,Mulder J W,et al.Full-scale granular sludge Anammox process[J].Biofilm Systems VI,2007,55(8-9):27-33.
    [4]Van der Star W R L,Abma W R,Blommers D,et al.Startup of reactors for anoxic ammonium oxidation:experiences from the first full-scale anammox reactor in Rotterdam[J].Water Research,2007,41(18):4149-4163.
    [5]Till B A,Weathers L J,Alvarez P J J.Fe(0)-supported autotrophic denitrification[J].Environmental Science&Technology,1998,32(5):634-639.
    [6]Xia S Q,Zhang Y H,Zhong F H.A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water[J].Bioresource Technology,2009,100(24):6223-6228.
    [7]Sahinkaya E,Yurtsever A,Akta,et al.Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor[J].Chemical Engineering Journal,2015,268(15):180-186.
    [8]Sahinkaya E,Dursun N.Use of elemental sulfur and thiosulfate as electron sources for water denitrification[J].Bioprocess and Biosystems Engineering,2015,38(3):531-541.
    [9]Wan D J,Liu H J,Qu J H,et al.Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification[J].Bioresource Technology,2009,100(1):142-148.
    [10]Han G B,Park J.NO-3-N removal with sulfur-lime porous ceramic carrier(SLPC)in the packed-bed bioreactors by autosulfurotrophic denitrification[J].Journal of the Taiwan Institute of Chemical Engineers,2012,43(4):591-596.
    [11]Flere J M,Zhang T C.Nitrate removal with sulfur-limestone autotrophic denitrification processes[J].Journal of Environmental Engineering,1999,125(8):721-729.
    [12]Liu L H,Koenig A.Use of limestone for p H control in autotrophic denitrification:batch experiments[J].Process Biochemistry,2002,37(8):885-893.
    [13]Wan D J,Liu H J,Liu R P,et al.Study of a combined sulfur autotrophic with proton-exchange membrane electrodialytic denitrification technology:Sulfate control and p H balance[J].Bioresource Technology,2011,102(23):10803-10809.
    [14]Lee D U,Lee I S,Choi Y D,et al.Effects of external carbon source and empty bed contact time on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification[J].Process Biochemistry,2001,36(12):1215-1224.
    [15]Oh S E,Yoo Y B,Young J C,et al.Effect of organics on sulfurutilizing autotrophic denitrification under mixotrophic conditions[J].Journal of Biotechnology,2001,92(1):1-8.
    [16]Liu H J,Jiang W,Wan D J,et al.Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water[J].Journal of Hazardous Materials,2009,169(1-3):23-28.
    [17]Wang H Y,Qu J H.Combined bioelectrochemical and sulfur autotrophic denitrification for drinking water treatment[J].Water Research,2003,37(15):3767-3775.
    [18]Sahinkaya E,Dursun N,Kilic A,et al.Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment:control of sulfate production[J].Water Research,2011,45(20):6661-6667.
    [19]Zhang T C,Lampe D G.Sulfur:limestone autotrophic denitrification processes for treatment of nitrate-contaminated water:batch experiments[J].Water Research,1999,33(3):599-608.
    [20]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.258-282.
    [21]Sahinkaya E,Dursun N.Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment:elimination of excess sulfate production and alkalinity requirement[J].Chemosphere,2012,89(2):144-149.
    [22]Soares M I M.Denitrification of groundwater with elemental sulfur[J].Water Research,2002,36(5):1392-1395.
    [23]Moon H S,Shin D Y,Nam K,et al.A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier[J].Chemosphere,2008,73(5):723-728.
    [24]Mora G,de Giner G F,Andara G,et al.Effect of organic carbon shock loading on endogenous denitrification in sequential batch reactors[J].Bioresource Technology,2003,88(3):215-219.
    [25]Chen G H,Ozaki H,Terashima Y.Endogenous denitrification in biofilm[J].Water Science and Technology,1992,26(3-4):523-534.
    [26]Koenig A,Liu L H.Kinetic model of autotrophic denitrification in sulphur packed-bed reactors[J].Water Research,2001,35(8):1969-1978.
    [27]Batchelor B,Lawrence A W.A kinetic model for autotrophic denitrification using elemental sulfur[J].Water Research,1978,12(12):1075-1084.
    [28]Kuypers M M,Sliekers A O,Lavik G,et al.Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J].Nature,2003,422(6932):608-611.
    [29]Strous M,Heijnen J J,Kuenen J G,et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [30]Liang Y H,Li D,Zhang X J,et al.Performance and influence factors of completely autotrophic nitrogen removal over nitrite(CANON)process in a biofilter packed with volcanic rocks[J].Environmental Technology,2015,36(8):946-952.
    [31]Liang Y H,Li D,Zhang X J,et al.Stability and nitriteoxidizing bacteria community structure in different high-rate CANON reactors[J].Bioresource Technology,2015,175:189-194.
    [32]Jaroszynski L W,Cicek N,Sparling R,et al.Importance of the operating p H in maintaining the stability of anoxic ammonium oxidation(ANAMMOX)activity in moving bed biofilm reactors[J].Bioresource Technology,2011,102(14):7051-7056.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700