用户名: 密码: 验证码:
机械合金化结合高压烧结制备PbSe-PbS固溶体合金的热电性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermoelectric Properties of PbSe-PbS Solid Solutions Prepared by Mechanical Alloying Method and High Pressure Sintering
  • 作者:杨曼曼 ; 朱红玉 ; 李洪涛 ; 樊浩天 ; 胡强 ; 胡美华 ; 李尚升 ; 宿太超
  • 英文作者:YANG Manman;ZHU Hongyu;LI Hongtao;FAN Haotian;HU Qiang;HU Meihua;LI Shangsheng;SU Taichao;Institute of Materials Science and Engineering, Henan Polytechnic University;School of Physics and Electronic Information Engineering, Henan Polytechnic University;Shanghai Customs District P.R.China;
  • 关键词:PbSe ; 热电材料 ; 机械合金化 ; 高温高压 ; 品质因子
  • 英文关键词:PbSe;;thermalelectric material;;mechanical alloying method;;high temperature and high pressure;;figure of merit
  • 中文刊名:GYWL
  • 英文刊名:Chinese Journal of High Pressure Physics
  • 机构:河南理工大学材料科学与工程学院;河南理工大学物理与电子信息学院;中华人民共和国上海海关;
  • 出版日期:2019-01-29 15:28
  • 出版单位:高压物理学报
  • 年:2019
  • 期:v.33;No.147
  • 基金:河南省自然科学基金(182300410248);; 河南理工大学杰出青年基金(J2016-5);; 中华人民共和国上海海关科研计划项目(HK012-2018,HK012-2018)
  • 语种:中文;
  • 页:GYWL201901003
  • 页数:5
  • CN:01
  • ISSN:51-1147/O4
  • 分类号:27-31
摘要
硒化铅(PbSe)作为一种无碲热电材料受到广泛关注。采用机械合金化结合高压烧结方法制备了PbSe-PbS固溶体合金(PbSe1–x Sx),并研究了Se/S含量对其结构和热电性能的影响。结果表明:采用机械合金化法能够快速合成出PbSe1–x Sx固溶体合金粉末,高压烧结实现了其快速致密化;通过调整Se/S比例可以实现PbSe1–x Sx电输运性能和导电类型的调控;固溶体合金能够实现短波声子散射,显著降低PbSe材料的热导率;当x=0.5、温度为600 K时,PbSe1–x Sx的最高品质因子达到0.54,比PbSe的品质因子(0.33@450K)高64%。
        Lead selenide(PbSe) has received extensive attention in recent years as a non-tellurium thermoelectric material. In this paper, PbSe-PbS solid solution alloys(PbSe1–x Sx) were prepared by mechanical alloying combined with high pressure sintering method. The influence of Se/S content on its structure and thermoelectric properties was studied. The results demonstrate that the mechanical alloying method can rapidly synthesize PbSe1–x Sx solid solution alloy powder, and achieve rapid densification by high pressure sintering. The electrical transport properties and conductivity type of PbSe1–x Sx powder can be controlled by adjusting the Se/S ratio; solid solution alloy can realize short-wave phonon scattering, which significantly reduces the thermal conductivity of PbSe material. When x = 0.5 and the temperature is 600 K,the highest quality factor of PbSe1–x Sx is 0.54, which is 64% higher than that of PbSe(0.33@450 K).
引文
[1]SNYDER G J,TBERER E S.Complex thermoelectric materials[J].Nature Materials,2008,7(2):105-114.
    [2]POUDEL B,HAO Q,MA Y,et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J].Science,2008,320(5876):634-638.
    [3]BENNETT G.Space nuclear power:opening the final frontier[C]//4th International Energy Conversion Engineering Conference and Exhibit(IECEC),2006:4191.
    [4]PRICE P J.Theory of transport effects in semiconductors:thermoelectricity[J].Physical Review,1956,104(5):1223-1239.
    [5]BHANDARI C M,ROWE D M.CRC handbook of thermoelectrics[M].Boca Raton:CRC Press,1995.
    [6]FAN H,SU T,LI H,et al.Enhanced thermoelectric performance of PbSe Co-doped with Ag and Sb[J].Journal of Alloys and Compounds,2015,639:106-110.
    [7]LIU W S,ZHANG B P,LI J F,et al.Enhanced thermoelectric properties in CoSb3-x Tex alloys prepared by mechanical alloying and spark plasma sintering[J].Journal of Applied Physics,2007,102(10):103717.
    [8]HU L P,ZHU T J,WANG Y G,et al.Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction[J].NPG Asia Materials,2014,6(2):e88.
    [9]ZHAO L D,ZHANG B P,LI J F,et al.Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering[J].Journal of Alloys and Compounds,2008,455(1/2):259-264.
    [10]LI J,TAN Q,LI J F,et al.BiSbTe-based nanocomposites with high ZT:the effect of SiC nanodispersion on thermoelectric properties[J].Advanced Functional Materials,2013,23(35):4317-4323.
    [11]DUAN B,ZHAI P,WEN P,et al.Enhanced thermoelectric and mechanical properties of Te-substituted skutterudite via nanoTiN dispersion[J].Scripta Materialia,2012,67(4):372-375.
    [12]STEELE M C,ROSI F D.Thermal conductivity and thermoelectric power of germanium-silicon alloys[J].Journal of Applied Physics,1958,29(11):1517-1520.
    [13]XU Z J,HU L P,YING P J,et al.Enhanced thermoelectric and mechanical properties of zone melted p-type(Bi,Sb)2Te3thermoelectric materials by hot deformation[J].Acta Materialia,2015,84:385-392.
    [14]BATES H E,WEINSTEIN M.The preparation and properties of segmented lead telluride-silicon-germanium thermoelements:19660062826[R].USA:NASA,1966.
    [15]LALONDE A D,PEI Y,WANG H,et al.Lead telluride alloy thermoelectrics[J].Materials Today,2011,14(11):526-532.
    [16]HU Z,GAO S.Upper crustal abundances of trace elements:a revision and update[J].Chemical Geology,2008,253(3/4):205-221.
    [17]RAVICH I U I.Semiconducting lead chalcogenides[M]//SEEGER K.Semiconductor Physics.Springer Science&Business Media,1970:5.
    [18]WANG H,PEI Y,LALONDE A D,et al.Heavily doped p-type pbse with high thermoelectric performance:an alternative for PbTe[J].Advanced Materials,2011,23(11):1366-1370.
    [19]LEE Y,LO S H,CHEN C,et al.Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide[J].Nature Communications,2014,5:3640.
    [20]PARKER D,SINGH D J.High-temperature thermoelectric performance of heavily doped PbSe[J].Physical Review B,2010,82(3):035204.
    [21]PEI Y L,LIU Y.Electrical and thermal transport properties of Pb-based chalcogenides:PbTe,PbSe,and PbS[J].Journal of Alloys and Compounds,2012,514(5):40-44.
    [22]FAN H T,SU T C,LI H T,et al.Enhanced low temperature thermoelectric performance and weakly temperature-dependent figure-of-merit values of PbTe-PbSe solid solutions[J].Journal of Alloys and Compounds,2016,658:885-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700