用户名: 密码: 验证码:
一种基于数值模式诊断自适应的北京地区对流性降水临近集合预报新方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A New Method of Adaptive Convective Precipitation Ensemble Nowcasting Based on the Numerical Model Diagnosis Over Beijing
  • 作者:王国荣 ; 平凡 ; 翟亮
  • 英文作者:WANG Guorong;PING Fan;ZHAI Liang;Laboratory of Cloud-Precipitation Physics and Severe Storms (LASG),Institute of Atmospheric Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Beijing Meteorological Observatory;
  • 关键词:对流发展集合概率 ; 模糊逻辑算法 ; 自适应降水集合预报(APEN)
  • 英文关键词:Ensemble convection evolution probability;;Fuzzy logic algorithm;;APEN(adaptive precipitation ensemble nowcasting)
  • 中文刊名:DQXK
  • 英文刊名:Chinese Journal of Atmospheric Sciences
  • 机构:中国科学院大气物理研究所云降水与强风暴重点实验室;中国科学院大学;北京市气象台;
  • 出版日期:2019-07-15
  • 出版单位:大气科学
  • 年:2019
  • 期:v.43
  • 基金:国家重点基础研究发展计划项目2013CB430105;; 国家自然科学基金项目41675059、41405059、41375066、U1333130~~
  • 语种:中文;
  • 页:DQXK201904014
  • 页数:20
  • CN:04
  • ISSN:11-1768/O4
  • 分类号:194-213
摘要
局地触发及组织化发展中尺度系统的生消演变是影响对流性降水临近预报的核心和关键。本文结合雷达外推预报、专家系统以及快速循环更新的高分辨数值模式系统,发展和构造了一种适合北京地区的基于数值模式预报诊断自适应的对流性降水临近集合预报新方法(APEN)。APEN基于降水外推预报结果,采用模糊逻辑算法,利用北京市气象局快速循环更新同化系统(RMAPS-IN)提供的对流诊断因子,计算对流系统发展演变(新生、增加和减弱)概率;在此基础上,扰动诊断因子阈值和权重,形成对流发展的集合概率预报;最后综合专家经验,根据对流集合概率,在降水外推预报基础上进行对流性降水调整。应用APEN,针对北京两次强弱降水过程,进行了降水的临近预报试验,结果表明:基于RMAPS-IN多种诊断因子的对流发展集合概率在强弱两种天气背景下,都能较好的反映对流系统在临近时段的发展趋势;基于专家经验模型的三种对流发展状态(对流新生、增加和减弱)下的降水调整,能合理的表征对流系统发展演变对降水的影响。APEN降水预报和RMAPS-IN的业务预报的对比显示:无论是系统性对流过程还是局地激发对流过程,APEN预报的降水落区和强度都更接近于实况,尤其是考虑对流发展演变影响的降水强度预报明显优于RMAPS-IN,APEN在北京地区对流性降水的临近预报中有明显的优势和应用潜力。
        The locally triggered or organizational development of mesoscale convective systems is the core and key for the accuracy of convective precipitation nowcasting. In this paper, combined with radar extrapolation prediction technology, expert system, and high-resolution numerical model system, a new adaptive convective precipitation ensemble nowcasting method combined with diagnosis from numerical weather prediction mode for Beijing area is developed Based on the precipitation extrapolation, APEN(adaptive precipitation ensemble nowcasting) uses convective diagnostic factors provided by the RMAPS-IN(Rapid-refresh Multi-scale Analysis and Prediction System — Integration)to calculate the probability of convection evolution(initiation, growth, and dissipation) by a fuzzy logic algorithm, and get an ensemble probability by disturbing diagnosis factor thresholds and weights. Then, based on the expert experience,the adjustment of convective precipitation based on the extrapolation of precipitation is carried out. APEN has been tested to make precipitation nowcasting with two cases(one is with heavy rainfall and the other is with weak rainfall) in Beijing. The results show that the ensemble convective evolution probability, which is based on the RMAPS-IN multidiagnosis factors, can reflect the trend of the convective system in both strong and weak weather conditions. Based on the expert experience model, adjustments of convective precipitation under three states(convection initiation, growth,and dissipation) can reasonably represent the impact of precipitation by evolution of convective systems. Comparison of precipitation nowcasting by APEN and RMAPS-IN(an operational system of Beijing Meteorological Bureau) shows that, regardless of whether the convective system is stimulated by systemic convection activity or locally triggered, the precipitation area and precipitation intensity predicted by APEN are closer to observations. In particular, the precipitation intensity forecast after considering the effect of convective evolution is much better than RMAPS-IN. The experimental comparison demonstrates APEN's advantages and application potential in convective precipitation forecasting.
引文
Berenguer M,Corral C,Sanchez-Diezma R,et al.2005.Hydrological validation of a radar-based nowcasting technique[J].J.Hydrometeorol.,6(4):532-549.doi:10.1175/JHM433.1
    Berenguer M,Sempere-Torres D,Pegram G G S.2011.SBMcast-An ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation[J].J.Hydrol.,404(3-4):226-240.doi:10.1016/j.jhydrol.2011.04.033
    Dixon M,Wiener G.1993.TITAN:Thunderstorm identification,tracking,analysis,and nowcasting-A radar-based methodology[J].J.Atmos.Oceanic Technol.,10(6):785-797.doi:10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
    Bellon A,Zawadzki I.1994.Forecasting of hourly accumulations of precipitation by optimal extrapolation of radar maps[J].J.Hydrol.157:211-233.doi:10.1016/0022-1694(94)90106-6
    Doswell III C A.2001.Severe convective storms-An overview[M]//Doswell III C A.Severe Convective Storms.Boston,MA:American Meteorological Society,1-26.doi:10.1007/978-1-935704-06-5_1
    Haiden T,Steinheimer M.2008.Improved nowcasting of precipitation based on convective analysis fields[M]//Michaelides S.Precipitation:Advances in Measurement,Estimation and Prediction.Berlin,Heidelberg:Springer,389-417.doi:10.1007/978-3-540-77655-0_15
    Haiden T,Kann A,Wittmann C,et al.2011.The integrated nowcasting through comprehensive analysis(INCA)system and its validation over the Eastern Alpine region[J].Wea.Forecasting,26:166-183.doi:10.1175/2010WAF2222451.1
    韩雷,俞小鼎,郑永光,等.2009.京津及邻近地区暖季强对流风暴的气候分布特征[J].科学通报,54(11):1585-1590.Han Lei,Yu Xiaoding,Zheng Yongguang,et al.2009.Statistic characteristics of severe convective storm during warm-season in the Beijing-Tianjin region and its vicinity[J].Chinese Sci.Bull.,54(14):2493-2498.doi:10.1007/s11434-009-0085-7
    雷蕾,孙继松,何娜,等.2017.“7.20”华北特大暴雨过程中低涡发展演变机制研究[J].气象学报,75(5):685-699.Lei Lei,Sun Jisong,He Na,et al.2017.A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016[J].Acta Meteorological Sinica,75(5):685-699.doi:10.11676/2017.054
    Marsan D,Schertzer D,Lovejoy S.1996.Causal space-time multifractal processes:Predictability and forecasting rain fields[J].Journal of Geophysical Research,101(21D):26333-26346.doi:10.1029/96JD01840
    Mueller C,Saxen T,Roberts R,et al.2003.NCAR auto-nowcast system[J].Wea.Forecasting,18(4):545-561.doi:10.1175/1520-0434(2003)018<0545:NAS>2.0.CO;2
    Olsen B T,Korsholm U S,Petersen C,et al.2015.On the performance of the new NWP nowcasting system at the Danish Meteorological Institute during a heavy rain period[J].Meteor.Atmos.Phys.,127(5):519-535.doi:10.1007/s00703-015-0388-y
    Schertzer D,Lovejoy S,Schmitt F,et al.1997.Multifractal cascade dynamics and turbulent intermittency[J].Fractals,5(3):427-471.doi:10.1142/s0218348x97000371
    Seed A W,Srikanthan R,Menabde M.1999.A space and time model for design storm rainfall[J].Journal of Geophysical Research,104(D24):31623-31630.doi:10.1029/1999jd900767
    Seed A W.2003.A dynamic and spatial scaling approach to advection forecasting[J].Journal of Applied Meteorology,42:381-388.doi:10.1175/1520-0450(2003)0422.0.CO;2
    Sun J Z,Xue M,Wilson J W,et al.2014.Use of NWP for nowcasting convective precipitation:Recent progress and challenges[J].Bull.Amer.Meteor.Soc.,95(3):409-426.doi:10.1175/BAMS-D-11-00263.1
    王改利,刘黎平.2007.暴雨云团的多尺度识别方法及其在临近预报中的应用[J].大气科学,31(3):400-409.Wang Gaili,Liu Liping.2007.A multiscale identifying algorithm for heavy rainfall and application in nowcasting[J].Chinese Journal of Atmospheric Sciences(in Chinese),31(3):400-409.doi:10.3878/j.issn.1006-9895.2007.03.03
    王国荣,王令.2013.北京地区夏季短时强降水时空分布特征[J].暴雨灾害,32(3):276-279.Wang Guorong,Wang Ling.2013.Temporal and spatial distribution of short-time heavy rain of Beijing in summer[J].Torrential Rain and Disasters(in Chinese),32(3):276-279.doi:10.3969/j.issn.1004-9045.2013.03.012
    王国荣,陈敏,由凤春,等.2014.基于对象诊断的空间检验方法(MODE)[J].气象科技,42(4):652-656.Wang Guorong,Chen Min,You Fengchun,et al.2014.Method for object-based diagnostic evaluation and its application[J].Meteor.Sci.Technol.(in Chinese),42(4):652-656.doi:10.3969/j.issn.1671-6345.2014.04.022
    Wilson J W,Megenhardt D L.1997.Thunderstorm initiation,organization,and lifetime associated with Florida boundary layer convergence lines[J].Mon.Wea.Rev.,125(7):1507-1525.doi:10.1175/1520-0493(1997)125<1507:TIOALA>2.0.CO;2
    Wilson J W,Roberts R D.2006.Summary of convective storm initiation and evolution during IHOP:Observational and modeling perspective[J].Mon.Wea.Rev.,134(1):23-47.doi:10.1175/MWR3069.1
    Wilson J W,Andrew Crook N,Mueller C K,et al.1998.Nowcasting thunderstorms:A status report[J].Bull.Amer.Meteor.Soc.,79(10):2079-2100.doi:10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2
    Wilson J W,Feng Y R,Chen M,et al.2010.Nowcasting challenges during the Beijing Olympics:Successes,failures,and implications for future nowcasting systems[J].Wea.Forecasting,25(6):1691-1714.doi:10.1175/2010WAF2222417.1
    Turner B J,Zawadzki I,and Germann U.2004.Predictability of precipitation from continental radar images.Part III:Operational nowcasting implementation(MAPLE)[J],Journal of Applied Meteorology,43:231-248.doi:10.1175/1520-0450(2004)043<0231:POPFCR>2.0.CO;2
    Yano J I,Ziemiańsk?M Z,Cullen M,et al.2018.Scientific challenges of convective-scale numerical weather prediction[J].Bull.Amer.Meteor.Soc.,99(4):699-710.doi:10.1175/BAMS-D-17-0125.1
    俞小鼎,周小刚,王秀明.2012.雷暴与强对流临近天气预报技术进展[J].气象学报,70(3):311-337.Yu Xiaoding,Zhou Xiaogang,Wang Xiuming.2012.The advances in the nowcasting techniques on thunderstorms and severe convection[J].Acta Meteor.Sinica(in Chinese),70(3):311-337.doi:10.11676/qxxb2012.030
    俞小鼎.2013.短时强降水临近预报的思路与方法[J].暴雨灾害,32(3):202-209.Yu Xiaoding.2013.Nowcasting thinking and method of flash heavy rain[J].Torrential Rain and Disasters,32(3):202-209.doi:10.3969/j.issn.1004-9045.2013.03.002
    Yussouf N,Kain J S,Clark A J.2016.Short-term probabilistic forecasts of the 31 may 2013 Oklahoma tornado and flash flood event using a continuous-update-cycle storm-scale ensemble system[J].Wea.Forecasting,31(3):957-983.doi:10.1175/WAF-D-15-0160.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700