用户名: 密码: 验证码:
磁流变支座剪切刚度与热损功耗的能效分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy efficiency analysis between shear stiffness and heat loss of magneto-rheological bearing
  • 作者:李锐 ; 陈思聪 ; 陈翔 ; 朱洪浪 ; 陈世嵬
  • 英文作者:Li Rui;Chen Sicong;Chen Xiang;Zhu Honglang;Chen Shiwei;Chongqing University of Posts and Telecommunications;Chongqing University of Science and Technology;
  • 关键词:磁流变支座 ; 宏微观分析 ; 热损功耗 ; 可变刚度 ; 测试
  • 英文关键词:magneto-rheological bearing;;macroscopic and microscopic analysis;;heat losses;;variable stiffness;;testing
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:重庆邮电大学;重庆科技学院;
  • 出版日期:2019-04-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(11572320);; 中国博士后基金面上项目(2017M610386);; 重庆市教委科学技术研究项目(KJQN201800644)资助
  • 语种:中文;
  • 页:YQXB201904018
  • 页数:8
  • CN:04
  • ISSN:11-2179/TH
  • 分类号:148-155
摘要
研究不同材料配比下的热损功耗和可调刚度的复杂关系,对提升叠层型磁流变支座(MRB)的隔减振性能具有重要意义。基于力磁耦合理论,构造分析支座的宏微观力磁耦合模型,进而计算支座磁场分布和水平剪切刚度,并考虑热损功耗的影响,得出支座刚度变化与磁流变橡胶(MRR)颗粒体积比的关系。通过MTS测试机对支座进行剪切测试,所得实验数据与理论计算的结果进行对比分析。结果表明,该支座最大可承受的热损功耗限制在38. 7 W时,支座剪切刚度变化为最大且可达42. 8%,其最优颗粒体积比为12%,且最优颗粒体积比随热损功耗的变化而发生偏移。该宏微观模型寻找到支座热损功耗与剪切刚度变化率的一种平衡规律,为磁流变橡胶支座进行结构和性能的优化设计提供了新思路。
        The study of the complex relationship between heat losses and variable stiffness under different material ratios has important significance to improve the vibration isolation performance of a laminated Magneto-rheological rubber bearing( MRB). Based on magneto-mechanical coupling theory,the macroscopic and microscopic magneto-mechanical coupling models are constructed for the bearing. In further,the magnetic field distribution and stiffness of horizontal shear of the bearing are calculated. Considering the influence of heat losses,the relationship between the range of stiffness and the particle volume ratio of the magneto-rheological rubber( MRR) is obtained.The bearing is sheared on the MTS tester,and the experimental data are compared with the theoretical results. Results show that the designed bearing can obtain the maximum range of stiffness up to 42. 8% while the maximum heat loss is limited within 38. 7 W,and the optimal particle volume ratio of the MRR is 12%. Besides,the optimal particle volume ratio of the MRR deviates with the changes of heat losses. Therefore,the balance law of heat losses and variable stiffness obtained by this macroscopic and microscopic theory model can provide a novel way to design the optimal structure and properties of MRB.
引文
[1] KALINA K A,BRUMMUND J,METSCH P,et al.Microscale modeling and simulation of magnetorheological elastomers[J]. PAMM,2017,17(1):27-30.
    [2]滕桂荣,朱绪力,孙朝阳,等.磁流变弹性体的导电机理分析[J].功能材料,2015,46(22):22045-22048.TENG G R,ZHU X L,SUN CH Y,et al. Analysis on conductive mechanism of magnetorheological elastomers[J]. Journal of Functional Materials,2015,46(22):22045-22048.
    [3]陈庆堂,宋一然,黄宜坚.基于ARMA模型的磁流变振动系统精确建模与性能研究[J].仪器仪表学报,2015,36(5):1014-1022.CHEN Q T, SONG Y R, HUANG Y J. Accurate modeling and performance investigation on MR vibration system based on the ARMA model[J]. Chinese Journal of Scientific Instrument,2015,36(5):1014-1022.
    [4]陈庆堂,黄宜坚.磁流变振动系统SWB对角切片谱-矩分析的时频特性研究[J].电子测量与仪器学报,2015,29(4):489-499.CHEN Q T,HUANG Y J. Research on time-frequency characteristics of SWB diagonal slice spectrum-moment analysis for MR vibrating system[J]. Journal of Electronic Measurement and Instrumentation, 2015,29(4):489-499.
    [5]李锐,杜鹏飞,李永福,等.基于相似理论的短型浮置板磁流变隔振试验研究[J].仪器仪表学报,2014,35(1):200-207.LI R,DU P F,LI Y F,et al. Magneto-rheological vibration isolation model experimental study on discrete floating slab based on similarity theory[J]. Chinese Journal of Scientific Instrument,2014,35(1):200-207.
    [6] LI Y,LI J. On rate-dependent mechanical model for adaptive magnetorheological elastomer base isolator[J].Smart Materials and Structures,2017,26(4):045001.
    [7] ZHAO L,YU M,FU J,et al. A miniature MRE isolator for lateral vibration suppression of bridge monitoring equipment:Design and verification[J]. Smart Materials and Structures,2017,26(4):047001.
    [8]李锐,牟文俊,陈世嵬,等.小尺度磁敏弹性体支座的结构设计及性能分析[J].仪器仪表学报,2016,37(10):2399-2406.LI R, MU W J, CHEN SH W, et al. Research on structure design and performance of a small-scale magneto-rheological elastomeric bearing[J]. Chinese Journal of Scientific Instrument,2016,37(10):2399-2406.
    [9] KIM W H,PARK J H,PARK J,et al. Comparative study on wear characteristics between flow mode and shear mode magnetorheological dampers[J]. Tribology Transactions,2018,61(3):459-473.
    [10] BEHROOZ M, WANG X, GORDANINEJAD F.Modeling of a new magnetorheological elastomer-based isolator[J]. Proceedings of SPIE-The International Society for Optical Engineering,2013,8688(3):119-124.
    [11] TU J W,TU B,MEI S T,et al. Research on new type MRE isolator and its mechanical model[J]. Materials Research Innovations,2014,18(S2):S2-552-S2-558.
    [12] LI Y,LI J,LI W. Design and experimental testing of an adaptive magneto-rheological elastomer base isolator[C].IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2013:381-386.
    [13] TAO Y, RUI X, YANG F, et al. Design and experimental research of a magnetorheological elastomer isolator working in squeeze/elongation-shear mode[J].Journal of Intelligent Material Systems and Structures,2018,29(7):1418-1429.
    [14] DAVIS L C. Model of magnetorheological elastomers[J].Journal of Applied Physics,1999,85(6):3348-3351.
    [15] JOLLY M R,CARLSON J D,MUNOZ B C. A model of the behaviour of magnetorheological materials[J]. Smart Materials and Structures,1996,5(5):607-614.
    [16] XING Z W,YU M,FU J,et al. Development and validation of a lateral MREs isolator[J]. International Symposium on Precision Engineering Measurement and Instrumentation International Society for Optics and Photonics,2015,9446(9):2408-18.
    [17] LI Y,LI J. Finite element design and analysis of adaptive base isolator utilizing laminated multiple magnetorheological elastomer layers[J]. Journal of Intelligent Material Systems and Structures, 2015,26(14):1861-1870.
    [18] SADOWSKI P,KOWALCZYK G K,STUPKIEWICZ S.Consistent treatment and automation of the incremental Mori-Tanaka scheme for elasto-plastic composites[J].Computational Mechanics,2017,60(3):493-511.
    [19] XIANG T,ZHONG R N,YAO B,et al. Particle size influence on the effective permeability of composite materials[J]. Communications in Theoretical Physics,2018,69(5):598.
    [20] BOZORTH R M. Ferromagnetism[J]. Newyork:WileyVCH,1993:992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700