用户名: 密码: 验证码:
2014~2017年北京城区霾污染态势及潜在来源
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of haze pollution situation and potential sources in Beijing urban area from 2014 to 2017
  • 作者:杨欣 ; 陈义珍 ; 赵妤希 ; 柴发合 ; 王婉
  • 英文作者:YANG Xin;CHEN Yi-zhen;ZHAO Yu-xi;CHAI Fa-he;WANG Wan;Chinese Research Academy of Environmental Sciences;Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing University of Information Science & Technology;
  • 关键词:北京 ; 霾污染 ; 后向轨迹 ; 传输通道 ; 潜在来源
  • 英文关键词:Beijing;;haze;;backward trajectory;;transport pathway;;potential source
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:中国环境科学研究院;南京信息工程大学江苏省大气环境与装备技术协同创新中心;
  • 出版日期:2018-09-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:环境保护部部门预算项目(2110301);; 大气重污染成因与治理攻关项目(DQGG-05-24)
  • 语种:中文;
  • 页:ZGHJ201809004
  • 页数:8
  • CN:09
  • ISSN:11-2201/X
  • 分类号:34-41
摘要
统计分析2014~2017年北京城区霾污染发生情况,利用HYSPLIT模式对4年内气流来向进行聚类计算,识别区域内的主要污染传输通道和潜在污染源区分布及变化.结果显示,研究期间北京市城区空气质量状况整体呈改善趋势,灰霾时发生率从2014年的50.6%降至2017年33.7%,灰霾日数由165d降至78d,每年10月到次年采暖结束的3月灰霾发生较为集中.不同强度霾发生频率逐年下降,秋、冬季灰霾发生频率及污染强度均逐步降低.冀东南平原区、太行山东麓以及燕山南麓沿线为京津冀地区的3条主要污染传输通道,传输高度均在近地1000m内,期间通道轨迹对应北京城区PM_(2.5)平均达124.1μg/m~3,其出现频率在2014~2017年逐年减小,并且各年当中同类轨迹所对应的北京PM_(2.5)均呈逐年下降趋势.北京城区PM2.5的主要潜在源区从华北平原和渤海天津港区域逐渐缩小至冀中南和鲁西北地区,且传输通道区域污染贡献率逐年降低,有利的天气形势和人为的区域减排是近年空气质量改善的2大主因.
        Combined the statistical analysis of Beijing urban haze from the year of 2014 to 2017 with the clustering results obtained by HYSPLIT backward trajectory mode, spatial characteristics and variation of main pollution transport pathways and potential source-zones were identified. The study revealed that the overall air quality in Beijing urban area kept improving during the study period, with the incidence of haze dropped from 50.6% in 2014 to 33.7% in 2017 and the occurrence of haze days decreased from 165 d to 78 d. Every year, haze always concentrated appears during coal heating period from October to the next March. The occurrence frequency of the different intensity haze has been decreasing year by year, both the frequency and the intensity of haze pollution happened in autumn and winter seasons declined gradually. There are three main pollution transport pathways in the Beijing-Tianjin-Hebei area, including the southeastern plain area of Hebei, the east foot of the Taihang Mountain and the south foot of the Yan Mountain, which altitudes were all below 1000 m of the ground, corresponding to the Beijing average concentration PM_(2.5 )of 124.1μg/m~3 during the study. The frequencies of main transport pathways have reduced gradually, and the contributions to PM_(2.5 )of Beijing by the same trajectory were also declined. Major potential source-zones of PM_(2.5 )in Beijing urban area has gradually narrowed to center-south parts of Hebei and northwest Shandong from the north China plain and the Tianjin port, with the decreasing contribution rate of the air pollution from the transport pathways. The favorable weather conditions and the control of human-derived regional emissions were the 2 major causes of the air quality improvement in the last 4 years.
引文
[1]尹聪,朱彬,曹云昌,等.秸秆焚烧影响南京空气质量的成因探讨[J].中国环境科学,2011,31(2):207-213.
    [2]秦娟娟,王静,程建光.2008年青岛市一次典型大气外来源输送污染过程分析[J].气象与环境学报,2010,26(6):35-39.
    [3]Wang J K,Xu J,He Y J,et al,Long range transport of nitrate in the low atmosphere over Northeast Asia[J].Atmospheric Environment,2016,144:315-324.
    [4]Ta-Chih Hsiao,Wei-Nai Chen,Wei-Cheng Ye,et al,Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants[J].Atmospheric Environment,2017,150:366-378.
    [5]Hamish Mc Gowan,Andrew Clark.Identification of dust transport pathways from Lake Eyre,Australia using Hysplit[J].Atmospheric Environment,2008,42(29):6915-6625.
    [6]Salah S Abdalmogith,Roy M Harrison.The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the UK[J].Atmospheric Environment,2005,39(35):6686-6695.
    [7]LászlóMakra,István Matyasovszky,Zoltán Guba,et al,Monitoring the long-range transport effects on urban PM10 levels using 3D clusters of backward trajectories[J].Atmospheric Environment,2011,45:2630-2641.
    [8]傅昭娟.后向轨迹模型在颗粒物区域影响溯源研究中应用现状[J].资源节约与环保,2016,(5):20-21.
    [9]王晓,郎建垒,程水源,等.京津冀及周边地区PM2.5传输规律研究[J].中国环境科学,2016,36(11):3211-3217.
    [10]Wang F,Chen D S,Cheng S Y,et al,Identification of regional atmospheric PM10transport pathways using HYSPLIT,MM5-CMAQ and synoptic pressure pattern analysis[J].Environmental Modelling&Software,2010,25(8):927-934.
    [11]赵子菁,魏永杰,张祥志,等.南京市霾天气与主要气象条件的相关分析[J].中国环境科学,2015,35(12):3570-3580.
    [12]吕升,沈利娟,李莉,等.不同气团下嘉兴市春季气溶胶的粒径分布特征[J].环境化学,2016,35(8):1715-1722.
    [13]任传斌,吴立新,张媛媛,等.北京城区PM2.5输送途径与潜在源区贡献的四季差异分析[J].中国环境科学,2016,36(9):2591-2598.
    [14]李莉,蔡鋆琳,周敏.2013年12月中国中东部地区严重灰霾期间上海市颗粒物的输送途径及潜在源区贡献分析[J].环境科学,2015,36(7):2327-2336.
    [15]QX/T 113-2010霾的观测和预报等级[S].
    [16]环境保护部办公厅.关于征求国家环境保护标准《灰霾污染日判别标准(试行)》意见的函[Z].北京,2014.
    [17]Begum B A,Kim E,Jeong C H,et al.Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode[J].Atmospheric Environment,2005,39:3719-3724.
    [18]王爱平,朱彬,银燕,等.黄山顶夏季气溶胶数浓度特征及输送潜在源区[J].中国环境科学,2014,34(4):852-861.
    [19]岳毅,李金娟,马千里.临安本地站2010~2015年PM10污染特征及影响因素分析[J].中国环境科学,2017,37(8):2877-2887.
    [20]王郭臣,王东启,陈振楼.北京冬季严重污染过程的PM2.5污染特征和输送路径及潜在源区[J].中国环境科学,2016,36(7):1931-1937.
    [21]苏福庆,高庆先,张志刚,等.北京边界层外来污染物输送通道[J].环境科学研究,2004,17(1):26-29,40.
    [22]王芳,陈东升,程水源,等.基于气流轨迹聚类的大气污染输送影响[J].环境科学研究,2009,22(6):637-642.
    [23]王茜.利用轨迹模式研究上海大气污染的输送来源[J].环境科学研究,2013,26(4):357-363.
    [24]苏玲玲,刘国卿,丁敏霞,等.基于210Po/210Pb活度比的大气颗粒物滞留时间研究[J].地球化学,2017,46(5):476-481.
    [25]Wang Y Q,Zhang X Y,Arimoto R.The contribution from distant dust sources to the atmospheric particulate matter loadings at Xi An,China during spring[J].Science of the Total Environment,2006,368(2/3):875-883.
    [26]Wang Y Q,Zhang X Y,Draxler R.Traj Stat:GIS-based Software that Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-term Air Pollution Measurement Data[J].Environ.Modell.Software,2009,24:938-939.
    [27]Sirois A.,Bottenheim J.W.Use of backward trajectories to interpret the 5-year record of PAN and O3ambient air concentrations at Kejimkujik National Park,Nova Scotia[J].Geophysical.Research,1995,100(D2):2867–2881.
    [28]王世强,黎伟标,邓雪娇,等.广州地区大气污染物输送通道的特征[J].中国环境科学,2015,35(10):2883-2890.
    [29]Peng Y,Liu X D,Dai J,et al.Aerosol size distribution and new particle formation events in the suburb of Xi'an,northwest China[J].Atmospheric Environment,2017,153:194-205.
    [30]夏玲君,刘立新.北京上甸子站大气CH4数据筛分及变化特征[J].中国环境科学,2017,37(11):4044-4051.
    [31]陈朝晖,程水源,苏福庆,等.华北区域大气污染过程中天气型和输送路径分析[J].环境科学研究,2008,21(1):17-21.
    [32]杨浩,白永清,刘琳,等.基于轨迹聚类河南地区大气污染过程空气输送通道研究[J].气象与环境学报,2017,33(4):29-39.
    [33]环境保护部办公厅.京津冀及周边地区2017年大气污染防治工作方案[Z].北京,2017.
    [34]沈晓琳,何立富.2015年11月大气环流和天气分析[J].气象,2016,42(2):254-260.
    [35]李明,花丛,马学款.2015年12月大气环流和天气分析[J].气象,2016,42(3):382-388.
    [36]司东,柳艳菊,邵勰.2015年海洋和大气环流异常及对中国气候的影响[J].气象,2016,42(4):484-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700