用户名: 密码: 验证码:
BSR与CSEM识别天然气水合物的优缺点对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison on the Advantages and Disadvantages of BSR and CSEM in Detecting Gas Hydrate
  • 作者:陈杰 ; 胡高伟 ; 卜庆涛
  • 英文作者:CHEN Jie;HU Gao-wei;BU Qing-tao;China University of Petroleum;Laboratory of Gas Hydrate, Ministry of Land and Resources, Qingdao Institute of Marine Geology;Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology;
  • 关键词:天然气水合物 ; 似海底反射(BSR) ; 海洋可控源电磁法
  • 英文关键词:gas hydrate;;bottom-simulating reflector(BSR);;marine controlled source electromagnetic method
  • 中文刊名:XNYJ
  • 英文刊名:Advances in New and Renewable Energy
  • 机构:中国石油大学(华东);青岛海洋地质研究所国土资源部天然气水合物重点实验室;海洋国家实验室海洋矿产资源评价与探测技术功能实验室;
  • 出版日期:2018-11-05 09:22
  • 出版单位:新能源进展
  • 年:2018
  • 期:v.6
  • 基金:国家自然科学基金项目(41474119);; 中国地质调查项目(121201005000150016);; 国家重点研发项目(2017YFC0307602)
  • 语种:中文;
  • 页:XNYJ201805015
  • 页数:13
  • CN:05
  • ISSN:44-1698/TK
  • 分类号:112-124
摘要
天然气水合物是一种分布广泛的新型清洁能源,是目前能源勘探界的研究热点之一。提升天然气水合物勘探技术以探测天然气水合物分布和进行资源量估算,对我国天然气水合物的开采和利用至关重要。本文对比总结了似海底反射(BSR)和海洋可控源电磁法(CSEM)识别天然气水合物的优势与局限性。结果表明,BSR是目前识别海洋天然气水合物的一种常用且重要的方法,但BSR与天然气水合物的存在并非一一对应,难以准确估算天然气水合物饱和度和资源量。海洋CSEM能相对准确地识别天然气水合物,并可通过获取储层电阻率估算天然气水合物饱和度和储量。两者的结合将有效提高天然气水合物的钻探成功率、降低勘探风险和节约勘探成本。
        Gas hydrate is a widely distributed new clean energy, which has become a research focus in energy exploration.Improving exploration technology and detecting gas hydrate recourses is of significance for exploiting and utilizing natural gas hydrate. In this paper, the advantages and limitations of bottom-simulating reflector(BSR) and marine controlled source electromagnetic method(CSEM) were summarized and compared. BSR is a common and indispensable method for identifying marine gas hydrate, while BSR does not necessarily indicate the presence of gas hydrates, and it is difficult to evaluate the gas hydrate saturation and resources. By contrast, marine CSEM can more accurately identify gas hydrates and estimate the saturation and reserves through the resistivity data of gas hydrate reservoirs. The combination of these two methods may hopefully increase the drilling success rate and reduce the risks and costs of the exploration.
引文
[1]SONG Y C,YANG L,ZHAO J F,et al.The status of natural gas hydrate research in China:a review[J].Renewable and sustainable energy reviews,2014,31:778-791.DOI:10.1016/j.rser.2013.12.025.
    [2]MILKOV A V.Global estimates of hydrate-bound gas in marine sediments:how much is really out there?[J].Earth-science reviews,2004,66(3/4):183-197.DOI:10.1016/j.earscirev.2003.11.002.
    [3]唐志远,胡云亭,郭清正,等.天然气水合物勘探开发新技术进展[J].地球物理学进展,2015,30(2):805-816.DOI:106038/pg20150244.
    [4]皮光林,王敏生,光新军,等.我国天然气水合物勘探开发行业现状、挑战与对策[J].中国矿业,2018,27(4):1-5.
    [5]尹聪,兰丽茜,王芳.海洋天然气水合物勘探方法综述[J].海洋开发与管理,2015,32(1):27-29.DOI:10.3969/j.issn.1005-9857.2015.01.007.
    [6]岳振欢,童思友,吴志强,等.地震多参数约束下的真假BSR识别[J].海洋地质前沿,2012,28(12):60-66.DOI:10.16028/j.1009-2722.2012.12.011.
    [7]王启.海底天然气水合物的CSEM响应研究[D].青岛:中国海洋大学,2014.
    [8]孙运宝,赵铁虎,秦轲.MTD引起的水合物解释陷阱--以神狐海域为例[J].海洋地质前沿,2015,31(6):36-43.DOI:10.16028/j.1009-2722.2015.06006.
    [9]牛滨华,文鹏飞,温宁,等.基于BSR的AVO正演估算水合物含量方法的研究[J].地球物理学报,2006,49(1):143-152.DOI:10.3321/j.issn:0001-5733.2006.01.020.
    [10]张秀丽.海洋CSEM法估算海底天然气水合物饱和度研究[D].青岛:中国海洋大学,2014.
    [11]李丽松,苗.天然气水合物勘探开发技术发展综述[J].天然气与石油,2014,32(1):67-71.DOI:10.3969/j.issn.1006-5539.2014.01.018.
    [12]张永勤.国外天然气水合物勘探现状及我国水合物勘探进展[J].探矿工程(岩土钻掘工程),2010,37(10):1-8.DOI:10.3969/j.issn.1672-7428.2010.10.001.
    [13]张洪涛,祝有海.中国冻土区天然气水合物调查研究[J].地质通报,2011,30(12):1809-1815.DOI:10.3969/j.issn.1671-2552.2011.12.001.
    [14]陈忠,颜文,陈木宏,等.南海北部大陆坡冷泉碳酸盐结核的发现:海底天然气渗漏活动的新证据[J].科学通报,2006,51(9):1065-1072.DOI:10.3321/j.issn:0023-074X.2006.09.011.
    [15]宋海斌,松林修,吴能友,等.海洋天然气水合物的地球物理研究(I):岩石物性[J].地球物理学进展,2001,16(2):118-126.DOI:10.3969/j.issn.1004-2903.2001.02.015.
    [16]MARKL R G,BRYAN G M,EWING J I.Structure of the Blake-Bahama outer ridge[J].Journal of geophysica research,1970,75(24):4539-4555.DOI:10.1029JC075i024p04539.
    [17]GREGORY A R.Fluid saturation effects on dynamic elastic properties of sedimentary rocks[J].Geophysics1976,41(5):895-921.DOI:10.1190/1.1440671.
    [18]宋海斌,张岭,江为为,等.海洋天然气水合物的地球物理研究(III):似海底反射[J].地球物理学进展,2003,18(2):182-187.DOI:10.3969/j.issn.1004-2903.2003.02.002.
    [19]HEIN J R,SCHOLL D W,BARRON J A,et al Diagenesis of late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea[J].Sedimentology,1978,25(2):155-181.DOI:10.1111/j.1365-3091.1978.tb00307.x.
    [20]HAACKE R R,WESTBROOK G K,HYNDMAN R DGas hydrate,fluid flow and free gas:Formation of the bottom-simulating reflector[J].Earth and planetary science letters,2007,261(3/4):407-420.DOI:10.1016j.epsl.2007.07.008.
    [21]杨睿,吴能友,白杰,等.南海北部无明显BSR地区天然气水合物识别研究[J].地球物理学进展,2013,28(2):1033-1040.DOI:10.6038/pg20130257.
    [22]赵丽娅.天然气水合物勘探方法BSR的探讨和研究[J].科技创新导报,2008(3):77.DOI:10.3969/j.issn.1674-098X.2008.03.058.
    [23]杨金秀,DAVIES R,肖佃师,等.BSR及其下伏游离气区的分布特征与控制因素[J].石油与天然气地质,2016,37(1):87-92.DOI:10.11743/ogg20160112.
    [24]沙志彬,杨木壮,梁金强,等.BSR的反射波特征及其对天然气水合物识别的应用[J].南海地质研究,2003(1):55-61.
    [25]姜辉,岑芳,于兴河.天然气水合物BSR的影响因素分析[J].天然气工业,2008,28(1):64-66.DOI:10.3787/j.issn.1000-0976.2008.01.016.
    [26]ECKER C.Seismic characterization of methane hydrate structures[D].California:Stanford University,1998.
    [27]HYNDMAN R D,DAVIS E E.A mechanism for the formation of methane hydrate and seafloor bottomsimulating reflectors by vertical fluid expulsion[J].Journal of geophysical research,1992,97(B5):7025-7041.DOI:10.1029/91JB03061.
    [28]岳振欢.海底天然气水合物地震属性分析[D].青岛:中国海洋大学,2013.DOI:10.7666/d.D326649.
    [29]王后金,沙志彬,梁劲.南海神狐暗沙海区天然气水合物地震识别特征[J].新疆石油地质,2013,34(1):83-87.
    [30]AUGUY C,CALVèS G,CALDERON Y,et al.Seismic evidence of gas hydrates,multiple BSRs and fluid flow offshore Tumbes Basin,Peru[J].Marine geophysical research,2017,38(4):409-423.DOI:10.1007/s11001-017-9319-2.
    [31]李广才.地震叠前AVO反演与天然气水合物识别研究[D].北京:中国地质大学(北京),2015.
    [32]阮爱国,李家彪,初凤友,等.海底天然气水合物层界面反射AVO数值模拟[J].地球物理学报,2006,49(6):1826-1835.DOI:10.3321/j.issn:0001-5733.2006.06.031.
    [33]阮爱国,李湘云.天然气水合物研究中的AVA方法分析[J].海洋学研究,2006,24(4):1-11.DOI:10.3969/j.issn.1001-909X.2006.04.001.
    [34]麻纪强,耿建华.天然气水合物似海底反射层(BSR)AVA特征:双相介质模型(英文)[J].应用地球物理,2008,5(1):57-66.DOI:10.1007/s11770-008-0002-x.
    [35]张如伟,张宝金,黄捍东,等.天然气水合物沉积层的AVA特征[J].石油地球物理勘探,2011,46(4):634-639.DOI:10.13810/j.cnki.issn.1000-7210.2011.04.005.
    [36]ECKER C,DVORKIN J,NUR A.Sediments with gas hydrates:internal structure from seismic AVO[J].Geophysics,1998,63(5):1659-1669.DOI:10.1190/1.1444462.
    [37]吴志强,文丽,童思友,等.海域天然气水合物的地震研究进展[J].地球物理学进展,2007,22(1):218-227.DOI:10.3969/j.issn.1004-2903.2007.01.031.
    [38]马海.天然气水合物储层AVO响应分析[D].青岛:中国海洋大学,2013.DOI:10.7666/d.D326647.
    [39]EHSAN M I,AHMED N,DIN Z U,et al.An application of AVO derived attributes to analyze seismic anomalies of gas hydrate bearing sediments in Makran offshore,Pakistan[J].Acta geodaetica et geophysica,2016,51(4):671-683.DOI:10.1007/s40328-015-0146-0.
    [40]WANG X C,PAN D Y.Application of AVO attribute inversion technology to gas hydrate identification in the Shenhu Area,South China Sea[J].Marine and petroleum geology,2017,80:23-31.DOI:10.1016/j.marpetgeo.2016.11.015.
    [41]CHEN M A P,RIEDEL M,HYNDMAN R D,et al.AVOinversion of BSRs in marine gas hydrate studies[J].Geophysics,2007,72(2):C31-C43.DOI:10.1190/1.2435604.
    [42]ARUN K P,SAIN K,KUMAR J.Elastic parameters from constrained AVO inversion:application to a BSR in the Mahanadi offshore,India[J].Journal of natural gas science and engineering,2018,50:90-100.DOI:10.1016/j.jngse.2017.10.025.
    [43]YI B Y,LEE G H,HOROZAL S,et al.Qualitative assessment of gas hydrate and gas concentrations from the AVO characteristics of the BSR in the Ulleung Basin,East Sea(Japan Sea)[J].Marine and petroleum geology2011,28(10):1953-1966.DOI:10.1016/j.marpetgeo.2010.12.001.
    [44]QIAN J,WANG X J,WU S G,et al.AVO analysis of BSR to assess free gas within fine-grained sediments in the Shenhu area,South China Sea[J].Marine geophysical research,2014,35(2):125-140.DOI:10.1007/s11001-014-9214-z.
    [45]MAJUMDAR U,COOK A E,SHEDD W,et al.The connection between natural gas hydrate and bottomsimulating reflectors[J].Geophysical research letters2016,43(13):7044-7051.DOI:10.1002/2016GL069443.
    [46]王涛.海底天然气水合物的海洋CSEM法CMP域反演研究[D].青岛:中国海洋大学,2015.
    [47]丁继才,沈劲松,翁斌,等.海洋可控源电磁勘探技术及发展趋势[C]//中国石油学会2015年物探技术研讨会论文集.宜昌:中国石油学会石油物探专业委员会,2015.
    [48]王启.拖曳式海洋CSEM法探测海底天然气水合物的有效性研究[J].南海地质研究,2015(1):78-86.
    [49]王猛,张汉泉,伍忠良,等.勘查天然气水合物资源的海洋可控源电磁发射系统[J].地球物理学报,2013,56(11):3708-3717.DOI:10.6038/cjg20131112.
    [50]陈凯,景建恩,赵庆献,等.海底可控源电磁接收机及其水合物勘查应用[J].地球物理学报,2017,60(11):4262-4272.DOI:10.6038/cjg20171114.
    [51]胡小群,李斌,黄涛,等.海洋可控源电磁勘探技术[J].海洋石油,2012,32(3):13-17.DOI:10.3969/j.issn.1008-2336.2012.03.013.
    [52]EDWARDS R N,CHEESMAN S J.Two-dimensional modelling of a towed transient magnetic dipole-dipole sea floor EM system[J].Journal of Geophysics Zeitschrift fur Geophysik,1987,61:110-121.
    [53]YUAN J,EDWARDS R N.The assessment of marine gas hydrates through electrical remote sounding:hydrate without a BSR?[J].Geophysical research letters,2000,27(16):2397-2400.DOI:10.1029/2000GL011585.
    [54]SCHWALENBERG K,WILLOUGHBY E,MIR R,et al Marine gas hydrate electromagnetic signatures in Cascadia and their correlation with seismic blank zones[J].First break,2005,23(4):57-63.
    [55]SCHWALENBERG K,HAECKEL M,POORT J,et al Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics:results from Opouawe Bank,Hikurangi Margin,New Zealand[J]Marine geology,2010,272(1/4):79-88.DOI:10.1016/j.margeo.2009.07.006.
    [56]MIR R.Design and deployment of a controlled source EM instrument on the NEPTUNE observatory for long-term monitoring of methane hydrate deposits[D].Toronto:University of Toronto(Canada),2011.
    [57]WEITEMEYER K A,CONSTABLE S C,KEY K W,et al.First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon[J].Geophysical research letters,2006,33(3):L03304.DOI:10.1029/2005GL024896.
    [58]WEITEMEYER K A,CONSTABLE S,TRéHU A M.Amarine electromagnetic survey to detect gas hydrate at Hydrate Ridge,Oregon[J].Geophysical journal international2011,187(1):45-62.DOI:10.1111/j.1365-246X.2011.05105.x.
    [59]WEITEMEYER K.Marine EM techniques for gashydrate detection and hazard mitigation[J].The leading edge,2006,25(5):629-632.DOI:10.1190/1.2202668.
    [60]HSU S K,CHIANG C W,EVANS R L,et al.Marine controlled source electromagnetic method used for the gas hydrate investigation in the offshore area of SWTaiwan[J].Journal of Asian earth sciences,2014,92:224-232.DOI:10.1016/j.jseaes.2013.12.001.
    [61]KEY K.Marine Electromagnetic studies of seafloor resources and tectonics[J].Surveys in geophysics,2011,33(1):135-167.DOI:10.1007/s10712-011-9139-x.
    [62]YAMANE K,SAEKI T,INAMORI T.Feasibility study of marine controlled-source electromagnetic for gas hydrate[C]//The 11th International Symposium on Recent Advances in Exploration Geophysics.April 2007.DOI:10.3997/2352-8265.20140089.
    [63]ZHAO L X,GENG J H,ZHANG S Y,et al.1-Dcontrolled source electromagnetic forward modeling for marine gas hydrates studies[J].Applied geophysics,2008,5(2):121-126.DOI:10.1007/s11770-008-0012-8.
    [64]LEE K H,JANG H,JANG H,et al.Sensitivity analysis of marine controlled-source electromagnetic methods to a shallow gas-hydrate layer with 1D forward modeling[J].Geosciences journal,2011,15(3):297-303.DOI:10.1007/s12303-011-0030-z.
    [65]HARINARAYANA T,HARDAGE B,ORANGE A.Controlled-source marine electromagnetic 2-D modeling gas hydrate studies[J].Marine geophysical research,2012,33(3):239-250.DOI:10.1007/s11001-012-9159-z.
    [66]韩波,胡祥云,SCHULTZ A,等.复杂场源形态的海洋可控源电磁三维正演[J].地球物理学报,2015,58(3):1059-1071.DOI:10.6038/cjg20150330.
    [67]盛堰,邓明,魏文博,等.海洋电磁探测技术发展现状及探测天然气水合物的可行性[J].工程地球物理学报,2012,9(2):127-133.DOI:10.3969/j.issn.1672-7940.2012.02.001.
    [68]刘婷婷,李予国.海洋可控源电磁法对天然气水合物高阻薄层的可探测度[J].海洋地质前沿,2015,31(6):17-22.DOI:10.16028/j.1009-2722.2015.06003.
    [69]蔡骥,李予国.时间域可控源电磁法探测海底天然气水合物可行性分析[J].海洋地质与第四纪地质,2016,36(1):159-163.DOI:10.16562/j.cnki.0256-1492.2016.01.016.
    [70]景建恩,伍忠良,邓明,等.南海天然气水合物远景区海洋可控源电磁探测试验[J].地球物理学报,2016,59(7):2564-2572.DOI:10.6038/cjg20160721.
    [71]王猛,邓明,伍忠良,等.新型坐底式海洋可控源电磁发射系统及其海试应用[J].地球物理学报,2017,60(11):4253-4261.DOI:10.6038/cjg20171113.
    [72]SCHWALENBERG K,WOOD W,PECHER I,et al.Preliminary interpretation of electromagnetic,heat flow,seismic,and geochemical data for gas hydrate distribution across the Porangahau Ridge,New Zealand[J].Marine geology,2010,272(1/4):89-98.DOI:10.1016/j.margeo.2009.10.024.
    [73]SCHWALENBERG K,RIPPE D,KOCH S,et al.Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank,Hikurangi Margin,New Zealand[J].Journal of geophysical research,2017,122(5):3334-3350.DOI:10.1002/2016JB013702.
    [74]方慧,孙忠军,徐明才,等.冻土区天然气水合物勘查技术研究主要进展与成果[J].物探与化探,2017,41(6):991-997.DOI:10.11720/wtyht.2017.6.01.
    [75]方慧,裴发根,何梅兴,等.音频大地电磁测深法探测冻土区天然气水合物有效性实验[J].物探与化探,2017,41(6):1068-1074.DOI:10.11720/wtyht.2017.6.11.
    [76]GOSWAMI B K,WEITEMEYER K A,MINSHULL TA,et al.A joint electromagnetic and seismic study of an active pockmark within the hydrate stability field at the Vestnesa Ridge,West Svalbard margin[J].Journal of geophysical research,2015,120(10):6797-6822.DOI:10.1002/2015JB012344.
    [77]GOSWAMI B K,WEITEMEYER K A,BüNZ S,et al Variations in pockmark composition at the Vestnesa Ridge:insights from marine controlled source electromagnetic and seismic data[J].Geochemistry,geophysics,geosystems,2017,18(3):1111-1125.DOI:10.1002/2016GC006700.
    [78]ATTIAS E,WEITEMEYER K,MINSHULL T A,et al Controlled-source electromagnetic and seismic delineation of subseafloor fluid flow structures in a gas hydrate province,offshore Norway[J].Geophysical journal international,2016,206(2):1093-1110.DOI:10.1093/gji/ggw188.
    [79]HOVERSTEN G M,CASSASSUCE F,GASPERIKOVAE,et al.Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data[J].Geophysics,2006,71(3):C1-C13.DOI:10.1190/1.2194510.
    [80]HOU Z S,RUBIN Y,HOVERSTEN G M,et al.Reservoir-parameter identification using minimum relative entropy-based Bayesian inversion of seismic AVA and marine CSEM data[J].Geophysics,2006,71(6):O77-O88.DOI:10.1190/1.2348770.
    [81]CHEN J S,HOVERSTEN G M.Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields[J].Geophysics,2012,77(1):R65-R80.DOI:10.1190/geo2011-0219.1.
    [82]DU Z,MACGREGOR L.Reservoir parameter estimation from joint inversion of marine CSEM and seismic AVOdata using the genetic algorithms[C]//Proceedings of the71st EAGE Conference and Exhibition Incorporating SPE EUROPEC,Amsterdam,The Netherlands,June8-11 2009.DOI:10.3997/2214-4609.201400494.
    [83]李刚.海洋可控源电磁与地震资料构造联合反演方法研究[D].青岛:中国海洋大学,2015.
    [84]杜润林.海洋可控源电磁场和地震波场联合反演方法研究[D].青岛:中国石油大学(华东),2015.
    [85]徐凯军,杜润林,刘展.海洋可控源电磁与地震一维联合储层参数反演[J].石油地球物理勘探,2016,51(1):197-203.DOI:10.13810/j.cnki.issn.1000-7210.2016.01.025.
    [86]黄国成.海底天然气水合物资源勘探流程和评价方法[D].武汉:中国地质大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700