用户名: 密码: 验证码:
阵列式多通道芯片液相色谱初探
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microfluidic Array Liquid Chromatography: A Proof of Principle Study
  • 作者:周拙恒 ; 刘娅 ; 张博
  • 英文作者:ZHOU Zhuo-Heng;LIU Ya;ZHANG Bo;College of Chemistry & Chemical Engineering, Xiamen University;
  • 关键词:微流控芯片 ; 液相色谱 ; 芯片色谱 ; 并行多道 ; 高通量
  • 英文关键词:Microfluidics;;Liquid chromatography;;Chip chromatography;;Multicolumn array;;High throughput
  • 中文刊名:FXHX
  • 英文刊名:Chinese Journal of Analytical Chemistry
  • 机构:厦门大学化学化工学院;
  • 出版日期:2019-02-01 16:41
  • 出版单位:分析化学
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金项目(Nos.21475110,21535007,J1310024);; 中央高校基本科研业务费(No.20720160051);; 厦门市科技计划项目(No.3502Z20173019)资助~~
  • 语种:中文;
  • 页:FXHX201904003
  • 页数:8
  • CN:04
  • ISSN:22-1125/O6
  • 分类号:31-38
摘要
分离技术的微型化不仅可以节约试剂和样品,还具有高效、快速、高分辨和高通量等优点。本研究以微流控芯片作为液相分离平台,构建了阵列式并行多通道分离与多道检测系统。基于玻璃芯片、聚甲基丙烯酸甲酯芯片和聚二甲基硅氧烷芯片构建了三重复合芯片作为分离平台,实现了单张芯片上8个色谱填充床的制备。芯片系统的承压考察实验证明,玻璃芯片可以作为可靠的芯片材料支持压力驱动的芯片液相色谱。通过层级式分流获得单根芯片柱300 nL/min的纳升级流速。考察了8通道芯片色谱分离的可行性和有效性,获得了80000 plates/m的优良柱效和保留时间RSD=1.1%的柱间重现性。以蛋白酶解物为样品,考察了此系统在复杂生物样品高通量分离分析中的应用潜能。
        Miniaturization of separation techniques can minimize consumption of solvent and requirement of sample size and leads to high efficiency, high speed, high resolution and high throughput analysis. In this study, a microfluidic chip-based array liquid chromatographic platform enabling multicolumn separation and detection was developed. The platform was based on the combination of glass, poly(methyl methacrylate)(PMMA) and polydimethylsiloxane(PDMS) chips and up to 8 packed chromatographic channels were manufactured on such a microfluidic device. Pressurization experiments showed that the array chip could be reliably used under pressure-driven liquid chromatographic mode. A nanoflow of 300 nL/min per column was realized through multi-stage flow splitting. We investigated feasibility and effectiveness of the 8 column array chip and obtained a high efficiency of 80000 plates per meter and a good reproducibility of RSD=1.1% for the retention time. Using a protein digest as the sample, we also explored the chip's potential applicability in high throughput separations of complex biological samples.
引文
1 Manz A, Graber N, Widmer H M. Sens. Actuators B, 1990, 1(1): 244-248
    2 Whitesides G M. Nature, 2006, 442(7101): 368-373
    3 Reichmuth D S, Shepodd T J, Kirby B J. Anal. Chem., 2005, 77(9): 2997-3000
    4 Jacobson S C, Koutny L B, Hergenroeder R, Moore A W, Ramsey J M. Anal. Chem., 1994, 66(20): 3472-3476
    5 Gottschlich N, Jacobson S C, Culbertson C T, Ramsey J M. Anal. Chem., 2001, 73(11): 2669-2674
    6 He B, Tait N, Regnier F. Anal. Chem., 1998, 70(18): 3790-3797
    7 Yin H, Killeen K, Brennen R, Sobek D, Werlich M, van de Goor T. Anal. Chem., 2005, 77(2): 527-533
    8 Zeng H L, Li H F, Lin J M. Anal. Chim. Acta, 2005, 551(1): 1-8
    9 Throckmorton D J, Shepodd T J, Singh A K. Anal. Chem., 2002, 74(4): 784-789
    10 Kircher M, Kelso J. Bioessays, 2010, 32(6): 524-536
    11 HAI Qing-Feng, LI Jing, WANG Er-Kang. Chinese J. Anal. Chem., 2018, 46(6): 814-825翟庆峰, 李敬, 汪尔康. 分析化学, 2018, 46(6): 814-825
    12 Nge P N, Rogers C I, Woolley A T. Chem. Rev., 2013, 113(4): 2550-2583
    13 Zhang B, Liu Q, Yang L J, Wang Q Q. J. Chromatogr. A, 2013, 1272(1): 136-140
    14 Xiao Z L, Wang L, Liu Y, Wang Q Q, Zhang B. J. Chromatogr. A, 2014, 1325(1): 109-114
    15 Liu Q, Yang L J, Wang Q Q, Zhang B. J. Chromatogr. A, 2014, 1349(7): 90-95
    16 Liu Q, Wang L, Zhou Z H, Wang Q Q, Yan L J, Zhang B. Electrophoresis, 2014, 35(6): 836-839
    17 Han J, Ye L Q, Xu L J, Zhou Z H, Gao F, Xiao Z L, Wang Q Q, Zhang B. Anal. Chim. Acta, 2014, 852(12): 267-273
    18 Yang L J, Xu L J, Guo R, Gao T Y, Guo H X, Yu Y, Lv J J, Wang Q Q, Zhang B. Anal. Chim. Acta, 2018, 1033(11): 205-212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700