用户名: 密码: 验证码:
雅鲁藏布江河水中CH_4和N_2O气体浓度及释放特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Concentrations and emissions of dissolved CH_4 and N_2O in the Yarlung Tsangpo River
  • 作者:叶润成 ; 吴起鑫 ; 赵志琦 ; 胡健 ; 崔丽峰 ; 丁虎
  • 英文作者:YE Run-cheng;WU Qi-xin;ZHAO Zhi-qi;HU Jian;CUI Li-feng;DING Hu;Key Laboratory of Karst Environment and Geohazard,Ministry of Land and Resources,Guizhou University;State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;University of Glasgow;
  • 关键词:河流 ; 甲烷(CH4) ; 氧化亚氮(N2O) ; 气体通量 ; 影响因素
  • 英文关键词:river;;CH4;;N2O;;gas flux;;influencing factor
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:贵州大学国土资源部喀斯特环境与地质灾害重点实验室;中国科学院地球化学研究所环境地球化学国家重点实验室;University of Glasgow;
  • 出版日期:2018-11-22 13:47
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.308
  • 基金:国家自然科学基金国际(地区)合作与交流项目(41661144042)资助
  • 语种:中文;
  • 页:STXZ201903022
  • 页数:8
  • CN:03
  • ISSN:21-1148/Q
  • 分类号:176-183
摘要
河流向大气释放大量温室气体,是陆地生态系统物质循环和能量流动的重要环节。山地河流是温室气体排放的热点区域,但迄今山地河流CH_4和N_2O释放方面的研究较少。为探究高原中大型河流CH_4和N_2O浓度的时空分布特征及其影响因素,对雅鲁藏布江(雅江)干流和主要支流河水中CH_4和N_2O气体进行了季节性采样分析。结果表明,雅江河水中CH_4含量为2.3~864.9 nmol·L-1,N_2O含量为8.2~23.7 nmol·L-1,枯水期CH_4含量和丰水期无显著差异(P=0.112),但枯水期N_2O含量显著高于丰水期(P=0.017),流量和水温可能分别是影响CH_4和N_2O变化的主要因子。雅江河水CH_4和N_2O的释放速率分别为4.3~11.1 mg C·m-2·d-1和0.16~0.37 mg N·m-2·d-1,排放量分别为1.88~4.59Gg C·a-1和0.07~0.16 Gg N·a-1,分别约占全球河流CH_4和N_2O释放量的1.25‰~3.06‰和2.17‰~4.96‰。山地河流CH_4和N_2O的排放需要引起重视,全球河流温室气体释放可能需要进行重新评估。
        Rivers release large quantities of greenhouse gases into the atmosphere,which is an important link in the material cycling and energy flow of terrestrial ecosystems. Mountainous rivers are ‘hotspots' for greenhouse gas emission,but the release of CH_4 and N_2O from those rivers has been less documented. To explore the spatio-temporal distributions and related controls of CH_4 and N_2O in middle-large plateau rivers,the seasonal variations of CH_4 and N_2O in tributary and main stream of the Yarlung Tsangpo River were examined. The results showed that the ranges of CH_4 and N_2O concentrations in the Yarlung Tsangpo were 2.3-864.9 and 8.2-23.7 nmol·L-1,respectively. There was no significant difference in CH_4 concentrations between low-flow and high-flow periods( P = 0. 112),but the N_2O contents were higher in low-flow months than in high-flow months( P = 0.017). River water discharge and water temperature were the major factors controlling the dynamics of CH_4 and N_2O emission,respectively. The release rates of CH_4 and N_2O in the Yarlung Tsangpo River ranged 4.3-11.1 mg C·m-2·d-1 and 0.16-0.37 mg N·m-2·d-1,respectively. The emission amounts of CH_4 and N_2O in Yarlung Tsangpo River system were 1.88-4. 59 Gg C · a-1 and 0. 07-0. 16 Gg N · a-1,accounting for 1.25‰-3.06‰ and2.17‰-4.96‰ of global river estimations,respectively. The evasion of CH_4 and N_2O in mountainous rivers need further detailed studies,which may revise the global estimation of greenhouse gas emission.
引文
吕鑫,刘小龙,李军,等.2018.河流拦截背景下水库氧化亚氮(N2O)排放的研究进展.生态学杂志,37(3):613-623.
    王亮,王雨春,段玉杰,等.2012.三峡水库香溪河库湾水-气界面N2O通量特征.三峡大学学报:自然科学版,34(1):14-18.
    王晓锋,袁兴中,陈槐,等.2017.河流CO2与CH4排放研究进展.环境科学,38(12):5352-5366.
    王秀娟.2015.雅鲁藏布江流域水循环时空变化特性研究.西藏科技,(7):8-12.
    杨丽标,雷坤,孟伟.2015.夏季大辽河河口区水体反硝化及其影响因素.环境科学,(3):905-913.
    赵炎,曾源,吴炳方,等.2011.水库水气界面温室气体通量监测方法综述.水科学进展,22(1):135-146.
    Allen GH,Pavelsky TM.2018.Global extent of rivers and streams.Science,361:585-588.
    Anthony SE,Prahl FG,Peterson TD.2012.Methane dynamics in the Willamette River,Oregon.Limnology&Oceanography,57:1517-1530.
    Barrie LA,Braathen GO,Butler JH,et al.2009.Annual Greenhouse Gas Bulletin.Eurpoean Geosciences Union General Assembly.Conference:Eurpoean Geosciences Union General Assembly 2009,At Vienna,Austria.
    Bastviken D,Tranvik LJ,Downing JA,et al.2011.Freshwater methane emissions offset the continental carbon sink.Science,331:50.
    Baulch HM,Dillon PJ,Maranger R,et al.2015.Diffusive and ebullitive transport of methane and nitrous oxide from streams:Are bubble-mediated fluxes important?Journal of Geophysical Research:Biogeosciences,116:4028.
    Billett MF,Harvey FH.2013.Measurements of CO2and CH4evasion from UK peatland headwater streams.Biogeochemistry,114:165-181.
    Cole JJ,Caraco NF.2005.Emissions of nitrous oxide(N2O)from a tidal,freshwater river,the Hudson River,New York.Environmental Science&Technology,35:991-996.
    Crawford JT,Striegl RG,Wickland KP,et al.2013.Emissions of carbon dioxide and methane from a headwater stream network of interior Alaska.Journal of Geophysical Research:Biogeosciences,118:482-494.
    GarcíA-Ruiz R,Pattinson SN,Whitton BA.1998.Denitrification and nitrous oxide production in sediments of the Wiske,a lowland eutrophic river.Science of the Total Environment,210:307-320.
    Halbedel S.2015.Protocol for CO2sampling in waters by the use of the headspace equilibration technique,based on the simple gas equation:Second update.Protocol Exchange,doi:10.1038/protex.2015.085.
    Hope D,Palmer SM,Billett MF,et al.2004.Variations in dissolved CO2and CH4in a first-order stream and catchment:An investigation of soil-stream linkages.Hydrological Processes,18:3255-3275.
    Hope D,Palmer SM,Billett MF.2001.Carbon dioxide and methane evasion from a temperate peatland stream.Limnology&Oceanography,46:847-857.
    Hren MT,Chamberlain CP,Hilley GE,et al.2007.Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river:Chemical weathering,erosion,and CO2consumption in the southern Tibetan Plateau and eastern syntaxis of the Himalaya.Geochimica et Cosmochimica Acta,71:2907-2935.
    Hu M,Chen D,Dahlgren RA.2016.Modeling nitrous oxide emission from rivers:A global assessment.Global Chang Biology,22:3566-3582.
    Huttunen JT,Alm J,Liikanen A,et al.2003.Fluxes of methane,carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions.Chemosphere,52:609-621.
    Jones JB,Mulholland PJ.1998.Methane input and evasion in a hardwood forest stream:Effects of subsurface flow from shallow and deep pathways.Limnology&Oceanography,43:1243-1250.
    Law CS,Rees AP,Owens NJP.1991.Temporal variability of denitrification in estuarine sediments.Estuarine,Coastal&Shelf Science,33:37-56.
    Liu XL,Bai L,Wang ZL,et al.2015.Nitrous oxide emissions from river network with variable nitrogen loading in Tianjin,China.Journal of Geochemical Exploration,157:153-161.
    Long H,Vihermaa L,Waldron S,et al.2015.Hydraulics are a first-order control on CO2efflux from fluvial systems.Journal of Geophysical Research:Biogeosciences,120:1912-1922.
    Louis VLS,Kelly CA,Duchemin,et al.2000.Reservoir surfaces as sources of greenhouse gases to the atmosphere:Aglobal estimate.Bioscience,50:766-775.
    Manaka T,Ushie H,Araoka D,et al.2015.Spatial and seasonal variation in surface water p CO2in the Ganges,Brahmaputra,and Meghna Rivers on the Indian Subcontinent.Aquatic Geochemistry,21:437-458.
    Meybeck M,Green P,Vrsmarty C.2001.A New Typology for mountains and other relief classes:An application to global continental water resources and population distribution.Mountain Research&Development,21:34-45.
    Qu B,Aho KS,Li C,et al.2017.Greenhouse gases emissions in rivers of the Tibetan Plateau.Scientific Reports,7:16573.
    Ray PA,Yang YCE,Wi S,et al.2015.Room for improvement:Hydroclimatic challenges to poverty-reducing development of the Brahmaputra River basin.Environmental Science&Policy,54:64-80.
    Raymond PA,Zappa CJ,Butman D,et al.2012.Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers.Limnology and Oceanography:Fluids and Environments,2:41-53.
    Richey JE,Devol AH,Wofsy SC,et al.1988.Biogenic gases and the oxidation and reduction of carbon in Amazon River and Floodplain Waters.Limnology&Oceanography,33:551-561.
    Richey JE,Melack JM,Aufdenkampe AK,et al.2002.Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2.Nature,416:617-620.
    Salimon C,dos Santos Sousa E,Alin SR,et al.2013.Seasonal variation in dissolved carbon concentrations and fluxes in the upper Purus River,southwestern Amazon.Biogeochemistry,114:245-254.
    Schelker J,Singer GA,Ulseth AJ,et al.2017.CO2evasion from a steep,high gradient stream network:Importance of seasonal and diurnal variation in aquatic p CO2and gas transfer.Limnology&Oceanography,61:1826-1838.
    Seitzinger SP,Kroeze C,Styles RV.2000.Global distribution of N2O emissions from aquatic systems:Natural emissions and anthropogenic effects.Chemosphere:Global Change Science,2:267-279.
    Stanley EH,Casson NJ,Christel ST,et al.2016.The ecology of methane in streams and rivers:Patterns,controls,and global significance.Ecological Monographs,86:146-171.
    Stow CA,Walker JT,Cardoch L,et al.2005.N2O emissions from streams in the Neuse river watershed,North Carolina.Environmental Science&Technology,39:6999-7004.
    Strom L,Christensen TR.2007.Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland.Soil Biology&Biochemistry,39:1689-1698.
    Upstill-Goddard RC,Barnes J,Frost T,et al.2000.Methane in the southern North Sea:Low-salinity inputs,estuarine removal,and atmospheric flux.Global Biogeochemical Cycles,14:1205-1217.
    Wallin MB,quist MG,Buffam I,et al.2011.Spatiotemporal variability of the gas transfer coefficient(k CO2)in boreal streams:Implications for large scale estimates of CO2evasion.Global Biogeochemical Cycles,25,doi:10.1029/2010GB003975.
    Wang D,Chen ZL,Xu SY.2007.The fluxes of CH4,CO2and N2O from Yangtze estuary intertidal flat in summer season.Geochimica,72:78-88.
    Wanninkhof R.1992.Relationship between wind speed and gas exchange over the ocean.Journal of Geophysical Research:Oceans,97:7373-7382.
    WMO.2015.Greenhouse Gas Bulletin:The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2015.World Meteorological Organization,2016.
    Yao G,Gao Q,Wang Z,et al.2007.Dynamics of CO2partial pressure and CO2outgassing in the lower reaches of the Xijiang River,a subtropical monsoon river in China.Science of the Total Environment,376:255-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700