用户名: 密码: 验证码:
煤矿巷道顶板宏观单裂隙的力学行为及影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influential analysis and mechanical behavior of macroscopic single fracture in roadway roof
  • 作者:王超 ; 伍永平 ; 陈世江 ; 郑文翔
  • 英文作者:WANG Chao;WU Yong-ping;CHEN Shi-jiang;ZHENG Wen-xiang;College of Energy Science and Engineering,Xi'an University of Science and Technology;School of Mining and Coal Engineering,Inner Mongolia University of Science and Technology;Key Laboratory of Western Mine Exploitation and Hazard Prevention,Ministry of Education,Xi'an University of Science and Technology;
  • 关键词:宏观裂隙 ; 张开率 ; 切向滑移度 ; 连通率 ; 力学行为 ; 顶板
  • 英文关键词:macro fracture;;openning rate;;tangential slip rate;;connectivity rate;;mechanical behavior;;roof
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:西安科技大学能源学院;内蒙古科技大学矿业与煤炭学院;西安科技大学西部矿井开采及灾害防治教育部重点实验室;
  • 出版日期:2019-03-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.166
  • 基金:国家自然科学基金(51634007,51564038);; 内蒙古自治区高等学校科学研究项目(NJZY17175)
  • 语种:中文;
  • 页:XKXB201902006
  • 页数:7
  • CN:02
  • ISSN:61-1434/N
  • 分类号:39-45
摘要
宏观尺度裂隙对岩体完整性和强度影响显著,其赋存形态亦影响巷道顶板的稳定。为了揭示裂隙赋存形态对巷道顶板的影响规律,以"张开率"和"切向滑移度"来表征裂隙(层理)的行为状态,利用FLAC~(3D)中Interface命令构建裂隙(层理),分析了不同裂隙倾角和连通率的单裂隙条件下巷道开挖后顶板裂隙的力学行为、位移、应力及其分布。结果表明:裂隙倾角及连通率影响裂隙开裂宽度及范围、裂隙(层理)剪切位移及范围、层理剪切滑移区分布;裂隙张开率和切向滑移度均与连通率呈"双曲线"关系;裂隙倾角对裂隙的形态与演化有较大影响;顶板下沉与裂隙倾角和连通率呈现单调增(减)关系。因此,控制顶板下沉能有效控制巷道顶板裂隙的扩展与连通,亦有助于预防顶板离层和滑移。
        The macro fracture has a significant impact on the integrity and strength of rock mass and also affects the stability of roadway roof. In order to reveal the influential law of the fracture on the roadway roof,the behaviour state of fracture( bedding) was characterized by the "opening rate"and "tangential slip rate",and the crack( bedding) was constructed by the interface command in FLAC~(3D). The mechanical behaviour,displacement,stress and its distribution were analysed under different fracture angle and connectivity rate of the single fracture. The results show that the crack width and range,the shear displacement and range of the fracture( bedding) and the distribution of the shear slip region in the bedding are affected by the fracture angle and connectivity rate. The "hyperbolic relationship"is shown at both the fracture connectivity rate and opening rate and the fracture connectivity rate and tangential slip rate. The fracture angle has a great influence on the fracture behavior and evolution. The roof subsidence,fracture angle and connectivity rate are monotonically increased or decreased. Therefore,it is effective to control the extension and connectivity of roof crack by controling roof subsidence,which also helps to prevent roof separation and slippage.
引文
[1]石祥超,张茹,高明忠,等.顶板随机裂隙对采动煤岩体支承压力的影响[J].中国矿业大学学报,2013,42(6):948-953.SHI Xiang-chao,ZHANG Ru,GAO Ming-zhong,et al.Numerical simulation of the effects of roof random fractures on abutment pressure of mining working face[J].Journal of China University of Mining&Technology:2013,42(6):948-953.
    [2]谢强,姜崇喜,凌建明.岩石细观力学实验与分析[M].重庆:西南交通大学出版社,1997.XIE Qiang,JIANG Chong-xi,LING Jian-ming. Experiment and analysis of rock micromechanics[M].Chongqing:Southwest Jiaotong University Press,1997.
    [3]张旭,郭奇峰,李书强,等.裂隙岩体崩落法回采凿岩巷道顶板稳定性研究[J].矿业研究与开发,2017,37(5):6-10.ZHANG Xu,GUO Qi-feng,LI Shu-qiang,et al. Study on roof stability of drilling drift as the fractured rock mass mined by caving method[J]. Mining Research and Development,2017,37(5):6-10.
    [4]苏石.胡麻岭隧道不同产状裂隙岩体稳定性及支护力学特性[J].路基工程,2012(2):95-98.SU Shi. Research on stability and support mechanical properties of fractured rock mass with different attitudes at humaling tunnel[J]. Subgrade Engineering,2012(2):95-98.
    [5] Tora?o J,Rodríguez Díez R,Rivas Cid J M,et al. FEM modeling of roadways driven in a fractured rock mass under a longwall influence[J]. Computers and Geotechnics,2002,29(6):411-431.
    [6] WANG Fang-tian,ZHANG Cun,WEI Shuai-feng,et al.Whole section anchor grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock[J]. Tunnelling and Underground Space Technology,2016,51:133-143.
    [7] Piotr Makowski,Lukasz Ostrowski,Piotr Bachanek. The impact of the low throw fault on the stability of roadways in a hard coal mine[J]. Studia Geotechnica et Mechanica,2017,39(1):63-72.
    [8] Karolina Adach-Pawelus. Influence of the roof movement control method on the stability of remnant[C]//IOP Conference Series:Earth and Environmental Science,IOP Publishing,2017,95(4):042022.
    [9]蒋力帅.工程岩体劣化与大采高沿空巷道围岩控制原理研究[D].北京:中国矿业大学(北京),2016.JIANG Li-shuai. Study on weakening of engineering rockmass and control principle of gob-side entry in large height mining condition[D]. Beijing:China University of Mining and Technology(Beijing),2016.
    [10] ZHANG Yan. Research on the height of water-flowing fractured zone under the weak roof strata and fully mechanized caving condition[J]. Advanced Materials Research,2015,3848(1092).
    [11]宋选民,顾铁凤,柳崇伟.受贯通裂隙控制岩体巷道稳定性试验研究[J].岩石力学与工程学报,2002(12):1781-1785.SONG Xuan-min,GU Tie-feng,LIU Chong-wei. Experimental study on roadway stability in rockmass with connected fissures[J]. Chinese Journal of Rock Mechanics and Engineering,2002(12):1781-1785.
    [12]顾铁凤.贯通裂隙控制岩体巷道稳定规律的数值模拟[J].采矿与安全工程学报,2007(4):432-438.GU Tie-feng. Numerical simulation of roadway stability laws in rock mass with connected fissures.[J]Journal of Mining and Safety Engineering,2007(4):432-438.
    [13]王德咏,王永平,莫海鸿.含内置裂隙的节理岩体的剪切行为数值模拟[J].地下空间与工程学报,2016,12(S2):488-492,509.WANG De-yong,WANG Yong-ping,MO Hai-hong. Numerical study of shear behavior of rock joints with embedded crack[J]. Chinese Journal of Underground Space and Engineering,2016,12(S2):488-492,509.
    [14]任利,谢和平,谢凌志,等.基于断裂力学的裂隙岩体强度分析初探[J].工程力学,2013,30(2):156-162,168.REN Li,XIE He-ping,XIE Ling-zhi,et al. Preliminary study on strength of cracked rock specimen based on fracture mechanics[J]. Engineering mechanics,2013,30(2):156-162,168.
    [15]李树忱,马腾飞,蒋宇静,等.深部多裂隙岩体开挖变形破坏规律模型试验研究[J].岩土工程学报,2016,38(6):987-995.LI Shu-chen,MA Teng-fei,JIANG Yu-jing,et al. Model tests on deformation and failure laws in excavation of deep rockmass with multiple fracture sets[J]. Chinese Journal of Geotechnical Engineering,2016,38(6):987-995.
    [16]王志刚,郭晓菲.双河煤矿采动巷道顶板裂隙的分形研究[J].岩土力学,2017,38(8):2377-2384.WANG Zhi-gang,GUO Xiao-fei. Study of roof fissures of mining induced roadway in Shuanghe coal mine based on fractal theory[J]. Rock and Soil Mechanics,2017,38(8):2377-2384.
    [17]郝传波,张国华,肖福坤,等.顶板节理裂隙发育条件下回采巷道的垮塌形态[J].黑龙江科技学院学报,2013,23(1):1-5.HAO Chuan-bo,ZHANG Guo-hua,XIAO Fu-kun,et al.Study of collapse shape about mining gateway under condition of developed joints and fractures roof[J]. Journal of Heilongjiang Institute of Science and Technology,2013,23(1):1-5.
    [18]李学华,梁顺,姚强岭,等.泥岩顶板巷道围岩裂隙演化规律与冒顶机理分析[J].煤炭学报,2011,36(6):903-908.LI Xue-hua,LIANG Shun,YAO Qiang-ling,et al. Analysis on fissure-evolving law and roof-falling mechanism in roadway with mudstone roof[J]. Journal of China Coal Society,2011,36(6):903-908.
    [19]黄醒春.层状裂隙岩石顶板的失稳[J].上海交通大学学报,1998(8):104-108.HUANG Xing-chun. Buckling behaviors of cracked roof[J]. Journal of Shanghai Jiaotong University,1998(8):104-108.
    [20]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2017.CHEN Yu-ming,XU Ding-ping. FLAC/FLAC3Dfoundation and engineering example[M]. Beijing:China Water and Power Press,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700