用户名: 密码: 验证码:
半煤岩工作面保护层开采的卸压机理及回采设备选型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on mechanism of pressure relief and selection of key equipment for protective layer of semi-coal rock working face
  • 作者:谢小平 ; 刘洪洋 ; 梁敏富
  • 英文作者:XIE Xiaoping;LIU Hongyang;LIANG Minfu;College of Mining and Civil Engineering,Liupanshui Normal College;School of Mines,China University of Mining & Technology;
  • 关键词:半煤岩 ; 上保护层 ; 卸压 ; 高瓦斯突出煤层群
  • 英文关键词:semi-coal rock;;upper protective layer;;pressure relief;;high gas and outburst coal seams
  • 中文刊名:MTKJ
  • 英文刊名:Coal Science and Technology
  • 机构:六盘水师范学院矿业与土木工程学院;中国矿业大学矿业工程学院;
  • 出版日期:2019-03-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:v.47;No.532
  • 基金:贵州省高等学校创新能力提升计划项目(黔教合协同创新字[2016]02号)
  • 语种:中文;
  • 页:MTKJ201903025
  • 页数:7
  • CN:03
  • ISSN:11-2402/TD
  • 分类号:173-179
摘要
基于保护层开采是解决低透气性高瓦斯突出煤层群卸压防突有效办法的现状,针对煤层群中不具备常规保护层(煤层厚度≥0.8 m)开采条件的问题,及实现下部被保护煤层卸压增透的难题,提出了极薄、薄煤层半煤岩工作面保护层开采技术的解决思路。通过理论分析了半煤岩工作面采高与下部煤层卸压的关系,并基于沙曲煤矿地质条件,采用数值模拟分析得出:被保护煤层膨胀变形率随着保护层开采厚度的增加大致呈线性增长。据此在沙曲煤矿22201工作面进行现场工业性试验,试验结果表明:在观测7个月时间内工作面共推进了602.6 m,平均每天推进3.05 m,共计出煤约181020 t。从现场生产实际可知,工作面及回采巷道内配置的设备满足生产需要,半煤岩工作面基本可实现安全高效开采。
        Exploration of protective seam is an effective method to solve gas outburst problems in coal seams which have high gas outburst and low permeability.However,conventional protective layer mining is difficult to implement in coal mines when a protective seam thicker than 0.8 m does not exist.The realization of pressure relief and permeability increase in lower protected seam is also a problem.In this paper,a method of semi-coal rock protective laying mining in thin coal seam is proposed.The relationship between mining height of semicoal rock and pressure relief of lower coal seam was analyzed.Numerical simulation was conducted in Shaqu Coal Mine and the results show that the expansion deformation rate of the protected coal seam is linearly proportional to the thickness of protective coal seam.The semicoal rock protective laying mining was carried out on No.22201 working face of Shaqu Coal Mine.It is found that the working face advanced602.6 m in total and 3.05 m daily on average and the total coal production was about 181 020 tons during the 7 months period implementing the method.The field practice suggests that equipment in working face and roadway is able to meet the production needs and the semicoal rock working face can be mined safely and efficiently.
引文
[1]张明杰,范豪杰,田加加.远距离极薄煤层下保护层开采防突效果研究[J].煤炭科学技术,2017,45(3):67-72.ZHANG Mingjie,FAN Haojie,TIAN Jiajia. Study on outburst prevention effect of mining in long distance and ultra thin underneath protective seam[J]. Coal Science and Technology,2017,45(3):67-72.
    [2]王伟,程远平,袁亮,等.深部近距离上保护层底板裂隙演化及卸压瓦斯抽采时效性[J].煤炭学报,2016,41(1):142-148.WANG Wei,CHENG Yuanping,YUAN Liang,et al. Floor fracture evolution and relief gas drainage timeliness in deeper underground short-distance upper protective coal seam extraction[J].Journal of China Coal Socity,2016,41(1):142-148.
    [3]刘应科.远距离下保护层开采卸压特性及钻井抽采消突研究[J].煤炭学报,2012,37(6):1067-1068.LIU Yingke. Study on the depressurization effect produced by exploitation of lower distant protective coal seam and elimination of outburst hazard of the protected seams by applying gas drainage with surface boreholes[J]. Journal of China Coal Socity,2012,37(6):1067-1068.
    [4]谢小平,刘衍利,艾德春,等.薄煤层切顶卸压无煤柱沿空留巷技术研究[J].煤炭技术,2017,37(7):36-38.XIE Xiaoping,LIU Yanli,AI Dechun,et al.Study on technology of cut top and relief pressure without coal pillar at gob-side entry retaining of thin coal seam[J]. Coal Technology,2017,37(7):36-38.
    [5]谢小平.高瓦斯煤层群薄煤层上保护层开采卸压机理及应用研究[D].徐州:中国矿业大学,2014.
    [6]钟耀华,谢文兵,谢小平,等.薄煤层保护层无煤柱煤与瓦斯共采技术研究[J].煤炭工程,2014,46(2):9-11.ZHONG Yaohua,XIE Wenbing,XIE Xiaoping,et al. Study on pillarless coal and gas simultaneous mining technology of thin seam protective seam[J].Coal Engineering,2014,46(2):9-11.
    [7]吕广罗,田刚军,张勇,等.巨厚砂砾岩含水层下特厚煤层保水开采分区及实践[J].煤炭学报,2017,42(1):189-196.LYU Guangluo,TIAN Gangjun,ZHANG Yong,et al. Division and practice of water-preserved mining in ultra-thick coal seam under ultra thicksandy conglomerate aquifer[J]. Journal of China Coal Society,2017,42(1):189-196.
    [8]郭志飚,王将,曹天培,等.梁薄煤层切顶卸压自动成巷关键参数研究[J].中国矿业大学学报,2016,45(5):879-885.GUO Zhibiao,WANG Jiang,CAO Tianpei,et al. Research on key parameters of gob-side entry retaining automatically formed by roof cutting and pressure release in thin coal seam mining[J]. Journal of China University of Mining&Technology, 2016, 45(5):879-885.
    [9]何满潮,郭鹏飞,王炯,等.禾二矿浅埋破碎顶板切顶成巷试验研究[J].岩土工程学报,2018,40(3):391-398.HE Manchao,GUO Pengfei,WANG Jiong,et al.Experimental study on gob-side entry formed by roof cut of broken roof at shallow depth of Hecaogou No. 2 Coal mine[J]. Chinese Journal of Geotechnical Engineering,2018,40(3):391-398.
    [10]张明杰,范豪杰,田加加,等.远距离极薄煤层下保护层开采防突效果研究[J].煤炭科学技术,2017,45(3):67-72.ZHANG Mingjie,FAN Haojie,TIAN Jiajia,et al. Study on outburst prevention effect of mining in long distance and ultra thin underneath protective seam[J]. Coal Science and Technology,2017,45(3):67-72.
    [11]余伟健,吴根水,刘海,等.薄煤层开采软弱煤岩体巷道变形特征与稳定控制[J].煤炭学报,2018,43(10):2668-2678.YU Weijian,WU Genshui,LIU Hai,et al.Deformation characteristics and stability control of soft coal-rock mining roadway in thin coal seam[J]. Journal of China Coal Society,2018,43(10):2668-2678.
    [12]程志恒,齐庆新,李宏艳,等.近距离煤层群叠加开采采动应力-裂隙动态演化特征实验研究[J].煤炭学报,2016,41(2):367-375.CHENG Zhiheng,QI Qingxin,LI Hongyan,et al. Evolution of the superimposed mining induced stress-fissure field under extracting of close distance coal seam group[J].Journal of China Coal Society,2016,41(2):367-375.
    [13]张煜铖.汇能煤矿三机选型及设备配套[J].煤矿机械,2018,39(1):104-105.ZHANG Yucheng. Selection and compatibility of longwall equipments in Huineng Coal Mine[J].Coal Mine Machinery,2018,39(1):104-105.
    [14]冉玉玺,田龙,孙建和.低位放顶煤开采技术在越南煤矿的推广应用[J].煤矿机械,2016,37(8):128-131.RAN Yuxi,TIAN Long,SUN Jianhe. Application of low-position top coal caving mining technology in coal mines of Vietnam[J].Coal Mine Machinery,2016,37(8):128-13.
    [15]司红勇.东峰煤矿沿空留巷围岩变形规律研究[J].煤矿机械,2017,38(6):32-34.SI Hongyong. Study on deformation law of surrounding rocks of gob-side entry retaining in Dongfeng Mine[J]. Coal Mine Machinery,2017,38(6):32-34.
    [16]霍丙杰,范张磊,路洋波,等.保护层开采被保护层体积应变与渗透特性相似模拟研究[J].煤炭科学技术,2018,46(7):19-25.HUO Bingjie,FAN Zhanglei,LU Yangbo,et al. Similarity simulation study on permeability of protected coal seam volumetric strain during mining protective coal seam[J]. Coal Science and Technology,2018,46(7):19-25.
    [17]雷瑛.煤矿机械绿色设计以及加工途径的分析[J].煤矿机械,2017,38(10):70-72.LEI Ying. Green design and processing way of coal mine machinery are analyzed[J]. Coal Mine Machinery,2017,38(10):70-72.
    [18]张刚.煤矿机械设备中故障诊断技术的应用分析[J].煤矿机械,2018,39(4):129-131.ZHANG Gang. Application analysis of fault diagnosis technology in coal mine machinery and equipment[J].Coal Mine Machinery,2018,39(4):129-131.
    [19]刘绪玉.不连沟煤矿高产高效开采设计及设备选型配套[J].煤炭科学技术,2013,41(8):4-7.LIU Xuyu. Design on high production and high efficient mining and matching on equipment selection in Buliangou Mine[J].Coal Science and Technology,2013,41(8):4-7.
    [20]李超,张志发,廖宇.近距离煤层大采高工作面设备选型[J].煤矿安全,2015,46(7):222-224.LI Chao,ZHANG Zhifa,LIAO Yu. Equipment selection of large mining height working face in closed distance seam[J]. Safety in Coal Mines,2015,46(7):222-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700