用户名: 密码: 验证码:
高温下红黏土热导率的变化规律试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EXPERIMENTAL STUDY ON VARIATION OF THERMAL CONDUCTIVITY OF RED CLAY AT HIGH TEMPERATURE
  • 作者:徐云山 ; 曾召田 ; 吕海波 ; 范理云 ; 覃汉莲
  • 英文作者:XU Yunshan;ZENG Zhaotian;Lü Haibo;FAN Liyun;QIN Hanlian;Guilin University of Technology,Guangxi Key Laboratory of New Energy and Building Energy Saving;Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification,Ministry of Land and Resources;College of Civil Engineering,Guangxi University;
  • 关键词:红黏土 ; 热导率 ; 预测模型 ; 温度效应
  • 英文关键词:Lateritic clay;;Thermal conductivity;;Prediction model;;Temperature effect
  • 中文刊名:GCDZ
  • 英文刊名:Journal of Engineering Geology
  • 机构:桂林理工大学广西建筑新能源与节能重点实验室;国土资源部岩溶生态系统与石漠化治理重点实验室;广西大学土木建筑工程学院;
  • 出版日期:2017-12-15
  • 出版单位:工程地质学报
  • 年:2017
  • 期:v.25;No.122
  • 基金:国家自然科学基金项目(41502284,51568014);; 国土资源部岩溶生态系统与石漠化治理重点实验室项目(KDL201603);; 桂林理工大学博士科研启动基金(2016254)资助
  • 语种:中文;
  • 页:GCDZ201706009
  • 页数:9
  • CN:06
  • ISSN:11-3249/P
  • 分类号:74-82
摘要
目前国际上对高温下土壤热导率的试验和模型预测研究比较缺乏,通过KD2 Pro测试两种红黏土在较广温度范围(5~90℃)和含水率范围内的热导率,并选择IPCHT模型预测高温下体积含水率-热导率的变化规律。测试结果表明,两种红黏土的热导率对体积含水率的敏感程度与温度有关,且热导率均随温度的升高而增大,在90℃时热导率最高可达5℃的3~4倍。60~90℃范围内热导率随体积含水率的变化存在明显的临界含水率(对应土壤的塑性指数),但相同温度、体积含水率下,柳州红黏土中水汽潜热传输效应较桂林红黏土要明显。模型预测研究表明,除粉砂质黏壤土外,高温下IPCHT模型预测效果均不理想,经传质增强因子ξ修正后,柳州红黏土以及细砂的热导率预测值和实测值均相符得较好(RMSE<30%),但桂林红黏土的整体预测效果仍较差。
        Currently,there is a lack of experimental study and model prediction of thermal conductivity of soil under high temperature around the world. Tests are conducted through KD2 Pro on two kinds of lateritic clay within a wide range of temperatures( 5 ~ 90℃) and water contents. Meanwhile,the IPCHT model is chosen to predict the variation of the volumetric water content and thermal conductivity under high temperature. The results of test indicate that the sensitivity of the thermal conductivity on the two kinds of lateritic clay to the volumetric water content is related to the temperature. The thermal conductivity increases with the increase of temperature. The thermal conductivity under 90℃ is 3 or 4 times as high as that under 5℃. The change of thermal conductivity with volumetric water content has obvious critical water content under 60 ~ 90℃( correspond to the plasticity index ofsoil). However,the latent heat transfer effect of water vapor in the lateritic clay of Liuzhou is more obvious than that in the lateritic clay of Guilin under the same temperature and volumetric water content. The results of model fit show that the prediction results of IPCHT model are not ideal except for the silty clay loam,after modification of the mass transfer enhancement factor ξ. The simulated values of the thermal conductivity of lateritic clay in Liuzhou and fine sand are in good agreement with the measured values( RMSE<30%). However,the overall prediction effect of the lateritic clay in Guilin is still not ideal.
引文
Campbell G S,Jungbauer J D,Bidlake W R,et al.1994.Predicting the effect of temperature on soil thermal conductivity[J].Soil Science,158(5):307~313.
    Cass A,Campbell G S,Jones T L.1984.Enhancement of thermal water vapor diffusion in soil[J].Soil Science Society of America Journal,48:25~32.
    Chang H S,Liu L,Ji C S,et al.2015.Soil-water characteristic curves of two kinds of lateritic clay from Guilin and Liuzhou[J].Journal of Guilin University of Technology,35(4):855~859.
    Corasaniti S,Gori F.2002.Theoretical prediction of the soil thermal conductivity at moderately high temperatures[J].Journal of Heat Transfer,124(6):1001~1008.
    De Vries D A 1963.Thermal properties of soils[M].Amsterdam:W RNorth-Holland Publishing Company.
    Hiraiwa Y,Kasubuchi T.2010.Temperature dependence of thermal conductivity of soils over a wide range of temperature(5~75℃)[J].European Journal of Soil Science,51(2):211~218.
    Leong W H,Tarnawski V R,Gori F,et al.2005.Inter-particle contact heat transfer models:an extension to soils at elevated temperatures[J].International Journal of Energy Research,29(2):131~144.
    Liu C H,Zhou D,Wu H.2011.Measurement and prediction of temperature effects of thermal conductivity of soils[J].Chinese Journal of Geotechnical Engineering,33(12):1877~1886.
    Lu S,Ren T S.2009.Model for predicting soil thermal conductivity at various temperatures[J].Transactions of the CSAE,25(7):13~18.
    Philip J R,Vries D A D.1957.Moisture movement in porous materials under temperature gradients[J].Eos Transactions American Geophysical Union,38(2):222~232.
    Smith G S.1956.Intermittent ground grids for heat pumps[J].Heating,Piping&Air Conditioning,18(8):127~133.
    Su T M,Liu T,Li X Z,et al.2006.Test and analysis of thermal properties of soil in Nanjing district[J].Chinese Journal of Rock Mechanics and Engineering,25(6):1278~1283.
    Tang A M,Cui Y J,Le T T.2008.A study on the thermal conductivity of compacted bentonites[J].Applied Clay Science,41(3):181~189.
    Tarnawski V R,Gori F,Wagner B,et al.2000.Modelling approaches to predicting thermal conductivity of soils at high temperatures[J].International Journal of Energy Research,24(5):403~423.
    Tarnawski V R,Gori F.2002a.Enhancement of the cubic cell soil thermal conductivity model[J].International Journal of Energy Research,26(2):143~157.
    Tarnawski V R,Leong W H,Gori F,et al.2002b.Inter-particle contact heat transfer in soil systems at moderate temperatures[J].International Journal of Energy Research,26(15):1345~1358.
    Wang H J,Zhao Z W,Qi C Y.2013.Experimental study of apparent thermal conductivity of moisture soil under high temperature[J].Acta Energiae Solaris Sinica,34(8):1385~1390.
    Wang T H,Liu Z C,Lu J.2007.Experimental study on coefficient of thermal conductivity and specific volume heat of loess[J].Rock and Soil Mechanics.28(4):655~658.
    Xiao L,Li X Z,Zhao X B,et al.2008.Laroratory on influences of moisture content and porosity on thermal conductivity of soils[J].Journal of PLA University of Science and Technology,9(3):241~247.
    Zhang Y J,Yu Z W,Huang R,et al.2009.Measurement of thermal conductivity and temperature effect of geotechnical materials[J].Chinese Journal of Geotechnical Engineering,31(2):213~217.
    Zhu L J,Li J Y.2004.Weathering and pedogenesis of carbonatite and its environmental effect[M].Beijing:Geological Publishing House.
    常红帅,刘丽,季春生,等.2015.桂林、柳州两种红黏土的土-水特征曲线[J].桂林理工大学学报,35(4):855~859.
    刘晨晖,周东,吴恒.2011.土壤热导率的温度效应试验和预测研究[J].岩土工程学报,33(12):1877~1886.
    陆森,任图生.2009.不同温度下的土壤热导率模拟[J].农业工程学报,25(7):13~18.
    苏天明,刘彤,李晓昭,等.2006.南京地区土体热物理性质测试与分析[J].岩土力学与工程学报,25(6):1278~1283.
    王华军,赵紫薇,齐承英.2013.高温下含湿土壤表观热导率的实验研究[J].太阳能学报,34(8):1385~1390.
    王铁行,刘自成,卢靖.2007.黄土导热系数和比热容的实验研究[J].岩土力学,28(4):655~658.
    肖琳,李晓昭,赵晓豹,等.2008.含水量与孔隙率对土体热导率影响的室内实验[J].解放军理工大学学报,9(3):241~247.
    张延军,于子望,黄芮,等.2009.岩土热导率测量和温度影响研究[J].岩土工程学报,31(2):213~217.
    朱立军,李景阳.2004.碳酸盐岩风化成土作用及其环境效应[M].北京:地质出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700