用户名: 密码: 验证码:
处理采矿废水湿地沉积物中厌氧氨氧化过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transformation of Ammonia in Wetland Sediments for Treatment of Mining Wastewater
  • 作者:汪海波 ; 马丁 ; 岳正波 ; 陶巍 ; 陈天虎 ; 王进
  • 英文作者:WANG Hai-bo;MA Ding;YUE Zheng-bo;TAO Wei;CHEN Tian-hu;WANG Jin;School of Resources and Environmental Engineering,Hefei University of Technology;
  • 关键词:氨氮 ; 厌氧氨氧化(ANAMMOX) ; Feammox ; 水铁矿 ; 采矿废水
  • 英文关键词:ammonia;;anaerobic ammonia oxidation(ANAMMOX);;Feammox;;ferrihydrite;;mining wastewater
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:合肥工业大学资源与环境工程学院;
  • 出版日期:2018-03-26 13:16
  • 出版单位:环境科学
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金项目(41372347)
  • 语种:中文;
  • 页:HJKZ201809032
  • 页数:7
  • CN:09
  • ISSN:11-1895/X
  • 分类号:253-259
摘要
氮元素在人工湿地生物地球化学循环中起到了重要作用,因此本文以处理采矿废水人工湿地为研究对象,分析了富硫、富铁沉积物中氨氮的厌氧转化过程及其主要途径.本实验以湿地沉积物为样品,通过添加氨氮和利用乙炔抑制剂的技术手段,探究了水铁矿对减少湿地氮流失的效果.结果发现了湿地中存在厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)以及厌氧氨氧化作用与铁还原耦合的作用过程(anaerobic ammonium oxidation coupled to iron reduction,Feammox).Feammox可以利用Fe(Ⅲ)氧化氨氮产生氮气,中间产物包括硝酸盐、亚硝酸盐、及温室气体N2O等.水铁矿的加入对Feammox过程有促进作用,使得Feammox过程主导的氨氮流失速率从1.69 mg·(kg·d)~(-1)增强到2.72 mg·(kg·d)~(-1),进而使得Feammox过程对氨氮流失的贡献率从28%增加到42%.但同时,水铁矿的加入使得ANAMMOX作用显著地降低,从而使得湿地系统总体氮流失可以减少约25%.研究结果表明水铁矿矿化形成针铁矿而抑制ANAMMOX过程、以及促进Feammox争夺硫酸盐型厌氧氨氧化过程(sulfate-reducing anaerobic ammonium oxidation,S-ANAMMOX)电子供体而抑制SANAMMOX过程,达到了减少湿地系统总氮流失的目的.另外,对于进一步认识湿地中铁的氧化还原循环过程同氮循环之间的交互作用具有一定的意义.
        Nitrogen elements play an important role in the biogeochemical cycle of artificial wetlands. In this study,we investigated the anaerobic transformation of ammonia nitrogen and its main pathways in sediment in an artificial wetland. Results showed that the anaerobic ammonia oxidation(ANAMMOX) process and iron reduction occurred in wetland sediment,coupled with anaerobic ammonia oxidation(Feammox). Feammox used Fe(Ⅲ) to oxidize ammonia nitrogen to produce nitrogen; intermediate products were nitrate,nitrite,and N2 O. Addition of ferrihydrite promoted the Feammox process and ammonia nitrogen loss caused by Feammox was enhanced from 1. 69 to 2. 72 mg·(kg·d)~(-1). When ferrihydrite was added,a loss of 28% of total nitrogen(TN) in the wetland occurred,associated with Feammox,increasing to 42%. Anaerobic ammonia oxidation was significantly inhibited with addition of ferrihydrite and TN loss in the system decreased by about 25%. Results showed that the formation of goethite by mineralization of ferrihydrite inhibited the ANAMMOX process,promoting Feammox to lead to competing electronic donors for the S-ANAMMOX process,causing inhibition of the S-ANAMMOX process. This achieves the purpose of reducing TN loss in the wetland system. In addition,this may have some significance for further understanding the interaction between iron reduction and the nitrogen cycle in the wetland.
引文
[1]周念清,王燕,钱家忠,等.湿地氮循环及其对环境变化影响研究进展[J].同济大学学报(自然科学版),2010,38(6):865-869.Zhou N Q,Wang Y,Qian J Z,et al.Advances in research on nitrogen cycle in wetlands and its influence on environmental change[J].Journal of Tongji University(Natural Science),2010,38(6):865-869.
    [2]Drge J.Modelling nitrogen transformations in freshwater wetlands.Estimating nitrogen retention and removal in natural wetlands in relation to their hydrology and nutrient loadings[J].Ecological Modelling,1994,75-76:409-420.
    [3]Mitsch W J,Gosselink J G.Wetlands(5th ed.)[M].New York:NJ John Wiley and Sons Inc.,2015.259-420.
    [4]任伊滨,任南琪,李志强.冻融对小兴安岭湿地土壤微生物碳、氮和氮转换的影响[J].哈尔滨工程大学学报,2013,34(4):530-535.Ren Y B,Ren N Q,Li Z Q.Effects of freeze-thaw cycles on soil microbial carbon,nitrogen and nitrogen conversion in Xiaoxing'anling boreal wetland of China[J].Journal of Harbin Engineering University,2013,34(4):530-535.
    [5]Yang X R,Li H,Nie S A,et al.Potential contribution of anammox to nitrogen loss from paddy soils in southern China[J].Applied and Environmental Microbiology,2015,81(3):938-947.
    [6]Deng F Y,Hou L J,Liu M,et al.Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary[J].Journal of Geophysical Research:Biogeosciences,2015,120(8):1521-1531.
    [7]Shen L D,Wu H S,Gao Z Q,et al.Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils[J].Applied Microbiology and Biotechnology,2016,100(7):3291-3300.
    [8]Ding L J,An X L,Li S,et al.Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J].Environmental Science&Technology,2014,48(18):10641-10647.
    [9]Clément J C,Shrestha J,Ehrenfeld J G,et al.Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J].Soil Biology and Biochemistry,2005,37(12):2323-2328.
    [10]Yang W H,Weber K A,Silver W L.Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J].Nature Geoscience,2012,5(8):538-541.
    [11]Shrestha J,Rich J J,Ehrenfeld J G,et al.Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils:Laboratory,field demonstrations,and push-pull rate determination[J].Soil Science,2009,174(3):156-164.
    [12]Li X F,Hou L J,Liu M,et al.Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J].Environmental Science&Technology,2015,49(19):11560-11568.
    [13]Sawayama S.Possibility of anoxic ferric ammonium oxidation[J].Journal of Bioscience and Bioengineering,2006,101(1):70-72.
    [14]陶巍.某矿区酸性矿山废水污染土壤及湿地处理系统的调查研究[D].合肥:合肥工业大学,2017.44-55.Tao W.The investigation on soil contaminated by acid mine wastewater and a wetland treatment system in a mining area[D].Hefei:Hefei University of Technology,2017.44-55.
    [15]李石磊.气相分子吸收光谱法检测气液固三相硫化物的研究[D].合肥:合肥工业大学,2014.12-29.Li S L.Determination of sulfide sulfur in gas-liquid-solid phase by gas-phase molecular absorption spectrometry[D].Hefei:Hefei University of Technology,2014.12-29.
    [16]孙志高,刘景双,杨继松,等.三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放[J].应用生态学报,2007,18(1):185-192.Sun Z G,Liu J S,Yang J S,et al.Nitrification-denitrification and N2O emission of typical Calamagrostis angustifolia wetland soils in Sanjiang plain[J].Chinese Journal of Applied Ecology,2007,18(1):185-192.
    [17]Barnes R T,Smith R L,Aiken G R.Linkages between denitrification and dissolved organic matter quality,Boulder Creek watershed,Colorado[J].Journal of Geophysical Research:Biogeosciences,2015,117(G1):G01014.
    [18]Yoshinari T,Hynes R,Knowles R.Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil[J].Soil Biology and Biochemistry,1977,9(3):177-183.
    [19]Jensen M M,Thamdrup B,Dalsgaard T.Effects of specific inhibitors on anammox and denitrification in marine sediments[J].Applied and Environmental Microbiology,2007,73(10):3151-3158.
    [20]Lovley D R,Phillips E J P.Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments[J].Applied and Environmental Microbiology,1987,53(11):2636-2641.
    [21]程冰如.针铁矿促进硝酸盐生物脱氮的初步研究[D].安徽:合肥工业大学,2015.14-29.Cheng B R.Preliminary study on enhanced biological nitrate reduction with goethite[D].Hefei:Hefei University of Technology,2015.14-29.
    [22]Schdler S,Burkhardt C,Hegler F,et al.Formation of celliron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(Ⅱ)-oxidizing bacteria[J].Geomicrobiology Journal,2009,26(2):93-103.
    [23]谢晶晶,庆承松,陈天虎,等.几种铁(氢)氧化物对溶液中磷的吸附作用对比研究[J].岩石矿物学杂志,2007,26(6):535-538.Xie J J,Qing C S,Chen T H,et al.A comparison of phosphate adsorption capacity between different iron hydroxides/oxides[J].Acta Petrologica et Mineralogica,2007,26(6):535-538.
    [24]Coby A J,Picardal F W.Inhibition of NO-3and NO-2reduction by microbial Fe(Ⅲ)reduction:evidence of a reaction between NO-2and cell surface-bound Fe2+[J].Applied and Environmental Microbiology,2005,71(9):5267-5274.
    [25]刘承帅,李芳柏,陈曼佳,等.Fe(Ⅱ)催化水铁矿晶相转变过程中Pb的吸附与固定[J].化学学报,2017,75(6):621-628.Liu C S,Li F B,Chen M J,et al.Adsorption and stabilization of lead during Fe(Ⅱ)-catalyzed phase transformation of ferrihydrite[J].Acta Chimica Sinica,2017,75(6):621-628.
    [26]王庆,杨会翠,王玲,等.添加水铁矿对水稻土N2O释放及反硝化微生物的影响[J].土壤学报,2016,53(5):1306-1315.Wang Q,Yang H C,Wang L,et al.Effect of amending ferrihydrite on N2O emission and denitrifying microorganisms in paddy soil[J].Acta Pedologica Sinica,2016,53(5):1306-1315.
    [27]Zhu X,Silva L C R,Doane T A,et al.Iron:the forgotten driver of nitrous oxide production in agricultural soil[J].PLo S One,2013,8(3):e60146.
    [28]Burns L C,Stevens R J,Laughlin R J.Determination of the simultaneous production and consumption of soil nitrite using15N[J].Soil Biology and Biochemistry,1995,27(6):839-844.
    [29]Hansen L S,Blackburn T H.Aerobic and anaerobic mineralization of organic material in marine sediment microcosms[J].Marine Ecology Progress Series,1991,75:283-291.
    [30]Huang B,Yu K W,Gambrell R P.Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil[J].Chemosphere,2009,74(4):481-486.
    [31]卢燕宇,黄耀,郑循华.农田氧化亚氮排放系数的研究[J].应用生态学报,2005,16(7):1299-1302.Lu Y Y,Huang Y,Zheng X H.N2O emission factor for agricultural soils[J].Chinese Journal of Applied Ecology,2005,16(7):1299-1302.
    [32]Caffrey J M,Bano N,Kalanetra K,et al.Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia[J].The ISME Journal,2007,1(7):660-662.
    [33]Santos I R,Cook P L M,Rogers L,et al.The“salt wedge pump”:convection-driven pore-water exchange as a source of dissolved organic and inorganic carbon and nitrogen to an estuary[J].Limnology and Oceanography,2012,57(5):1415-1426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700