用户名: 密码: 验证码:
对致密气藏水膜厚度的再认识
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Re-recognition of water film thickness in tight gas reservoirs
  • 作者:杨宇 ; 周文 ; 姜平 ; 张辉 ; 周伟 ; 杨琛 ; 张昊 ; 游振江
  • 英文作者:YANG Yu;ZHOU Wen;JIANG Ping;ZHANG Hui;ZHOU Wei;YANG Chen;ZHANG Hao;YOU Zhenjiang;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation at Chengdu University of Technology;CNOOC China Limited,Zhanjiang Branch;College of Energy,Chengdu University of Technology;School of Petroleum,the University of Adelaide;
  • 关键词:气藏 ; 毛管压力 ; 分离压力 ; 束缚水 ; 水膜厚度
  • 英文关键词:gas reservoir;;capillary pressure;;separation pressure;;bound water;;water film thickness
  • 中文刊名:ZHSD
  • 英文刊名:China Offshore Oil and Gas
  • 机构:油气藏地质及开发工程国家重点实验室(成都理工大学);中海石油(中国)有限公司湛江分公司;成都理工大学能源学院;阿德莱德大学石油学院;
  • 出版日期:2019-02-20
  • 出版单位:中国海上油气
  • 年:2019
  • 期:v.31
  • 基金:“十三五”国家科技重大专项“海相页岩气储层评价技术研究(编号:2016ZX05034-002-006)”、“南海西部海域低渗油藏勘探开发关键技术研究(编号:2016ZX05024-006)”部分研究成果
  • 语种:中文;
  • 页:ZHSD201901011
  • 页数:9
  • CN:01
  • ISSN:11-5339/TE
  • 分类号:98-106
摘要
在实际气层中,束缚水以毛管束缚水和水膜形式存在。根据由Derjaguin-Landau-Verwey-Overbee理论建立的总分离压和水膜厚度的理论计算模型,结合扩展Young-Laplace公式,采用迭代算法,提出了计算储层水膜厚度的图解法。利用实际地层实测温度、压力数据,得到总分离压与水膜厚度曲线,求得在气藏中部孔隙中的水膜厚度远小于含气孔隙半径。在实际气藏的高矿化度水溶液中,静电斥力较小,只有Van der Waals引力是保持水膜稳定的主要作用力,因此气藏孔隙中水膜厚度小。对比临界孔隙半径和水膜厚度的计算值表明,束缚水主要以毛管束缚水的形式存在,水膜厚度远小于含气孔隙的半径,对天然气渗流的影响小。
        In the actual gas layer,the bound water exists in the form of capillary bound water and water film.According to the theoretical calculation model of total separation pressure and water film thickness established by Derjaguin-Landau-Verwey-Overbee theory,in combination with the extended Young-Laplace formula,an iterative algorithm was adopted to calculate the reservoir water film thickness.By utilizing the measured temperature and pressure data of the actual formation,the total separation pressure and water film thickness curve were obtained,indicating that the thickness of water film in the pores of the middle reservoir is much smaller than that of the gasbearing pore radius.In the high salinity aqueous solution of the actual gas reservoir,the electrostatic repulsion is small,and only the Van der Waals gravitation can maintain the stability of water film,so the water film thickness in the pores of gas reservoir is small.Comparing the calculated values of critical pore radius and water film thickness,the bound water mainly exists in the form of capillary-bound water.Since the water film thickness is much smaller than the radius of gas-bearing pores,its influence on natural gas seepage is limited.
引文
[1]杨晓萍,赵文智,邹才能,等.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,28(4):57-61.YANG Xiaoping,ZHAO Wenzhi,ZOU Caineng,et al.Origin of low permeability reservoir and distribution of favorable reservoir[J].Acta Petrolei Sinica,2007,28(4):57-61.
    [2]王瑞飞,沈平平,宋子齐,等.特低渗透砂岩油藏储层微观孔喉特征[J].石油学报,2009,30(4):560-563.WANG Ruifei,SHEN Pingping,SONG Ziqi,et al.Characteristics of micro pore throat in ultra low permeability sandstone reservoir[J].Acta Petrolei Sinica,2009,30(4):560-563.
    [3]徐绍良,岳湘安.低速非线性流动特性的实验研究[J].中国石油大学学报(自然科学版),2007,31(5):60-63.XU Shaoliang,YUE Xiang’an.Experimental research on nonlinear flow characteristics at low velocity[J].Journal of China University of Petroleum(Edition of Natural Science),2007,31(5):60-63.
    [4]李洋,雷群,刘先贵,等.微尺度下的非线性渗流特征[J].石油勘探与开发,2011,38(3):336-340.LI Yang,LEI Qun,LIU Xiangui,et al.Characteristics of micro scale nonlinear filtration[J].Petroleum Exploration and Development,2011,38(3):336-340.
    [5]刘德新,岳湘安,侯吉瑞.孔隙介质中边界流体动态特性实验研究[J].大庆石油地质与开发,2008,27(5):58-61.LIU Dexin,YUE Xiang’an,HOU Jirui.Experimental studies on dynamic characteristics of boundary fluids in porous media[J].Petroleum Geology&Oilfield Development in Daqing,2008,27(5):58-61.
    [6]贺承祖,华明琪.油气储层中的水膜[J].油田化学,1993,10(3):272-276.HE Chengzu,HUA Mingqi.The water film in oil and gas reservoir[J].Oilfield Chemistry,1993,10(3):272-276.
    [7]贺承祖,华明琪.油气藏中水膜的厚度[J].石油勘探与开发,1998,25(2):75-77.HE Chengzu,HUA Mingqi.The thickness of water film in oil and gas reservoir[J].Petroleum Exploration and Development,1998,25(2):75-77.
    [8]刘辉,冯明生,何顺利,等.特低渗油藏渗流阻力梯度的非线性特征[J].中国石油大学学报(自然科学版),2009,33(6):82-86.LIU Hui,FENG Mingsheng,HE Shunli,et al.Nonlinear feature of flow resistance gradient in ultra-low permeability reservoir[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(6):82-86.
    [9] DERJAGUIN B,LANDAU L.Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes[J].Acta Physicochim Ussr,1993,14(1-4):30-59.
    [10] GEE M L,HEALY T W.Hydrophobicity effects in the condensation of water films on quartz[J].Journal of Colloid&Interface Science,1990,140(2):450-465.
    [11] NISHIYAMA N,YOKOYAMA T.Estimation of water film thickness in geological media associated with the occurrence of gas entrapment[J].Procedia Earth&Planetary Science,2013,7(8):620-623.
    [12] WARD A D,OTTEWILL R H,HAZLETT R D.An investigation into the stability of aqueous films separating hydrocarbon drops from quartz surfaces[J].Journal of Petroleum Science&Engineering,1999,24(2-4):213-220.
    [13] TAKAHASHI S,KOVSCEK A R.Wettability estimation of low-permeability,siliceous shale using surface forces[J].Journal of Petroleum Science&Engineering,2010,75(1/2):33-43.
    [14] XIE Q,SAEEDI A,POORYOUSEFY E,et al.Extended DLVObased estimates of surface force in low salinity water flooding[J].Journal of Molecular Liquids,2016,221:658-665.
    [15]何更生,唐海.油层物理[M].北京:石油工业出版社,2011.
    [16] HALL A C,COLLINS S H,MELROSE J C.Stability of aqueous wetting films in Athabasca tar sands[J].Society of Petroleum Engineers Journal,1983,23(2):249-258.
    [17] GREGORY J.Interaction of unequal double layers at constant charge[J].Journal of Colloid&Interface Science,1975,51(1):44-51.
    [18] TOKUNAGA T K.Correction to DLVO-based estimates of adsorbed water film thicknesses in geologic CO2reservoirs[J].Langmuir,2013,29(28):8001-8009.
    [19] CHANDRASEKHAR B,DANDINA N R.Application of DLVO theory to characterize spreading in crude oil-brine-rock systems[R].SPE 89425,2004.
    [20] HIRASAKI G J.Wettability:fundamentals and surface forces[J].SPE Formation Evaluation,1991,6(2):217-226.
    [21] SUTTON R P.An improved model for water-hydrocarbon surface tension at reservoir conditions[R].SPE 124968,2009.
    [22] UHLIG H H,KEYES F G.The Dependence of the dielectric constants of gases on temperature and density[J].Journal of Chemical Physics,1933,1(2):155-159.
    [23] ACHTERMANN H J,HONG J,WAGNER W,et al.Refractive index and density isotherms for methane from 273to 373K and at pressures up to 34 MPa[J].Journal of Chemical&Engineering Data,1992,37(4):414-418.
    [24] ISRAELACHVILI J N.Chapter 13-Van der Waals forces between particles and surfaces[J].Intermolecular&Surface Forces,2011:253-289.
    [25]ЗОРИН,З.М.,идр.Смациваюшиепленкиводныхрaстворов-электролитовнаповерхностиплавленногокварца.Коллоид-Журн,1990,52(4):666-673.
    [26] BERLI C L,PIAGGIO M V,DEIBER J A.Modeling the zeta potential of silica capillaries in relation to the background electrolyte composition[J].Electrophoresis,2003,24(10):1587-1595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700