用户名: 密码: 验证码:
巷道层状顶板三向承载梁承载能力弱化机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bearing and weakening mechanism of triaxial beam structure in roadway laminated roof
  • 作者:周波 ; 袁亮 ; 薛生
  • 英文作者:ZHOU Bo;YUAN Liang;XUE Sheng;Department of Energy Engineering,Huainan Vocational & Technical College;School of Energy and Safety,Anhui University of Science and Technology;
  • 关键词:巷道层状顶板 ; 三向承载梁 ; 承载能力 ; 衰减规律 ; 极限承载应力
  • 英文关键词:roadway laminated roof;;triaxial beam structure;;bearing capacity;;attenuation law;;ultimate load bearing stress
  • 中文刊名:MTKJ
  • 英文刊名:Coal Science and Technology
  • 机构:淮南职业技术学院能源工程系;安徽理工大学能源与安全学院;
  • 出版日期:2019-01-15
  • 出版单位:煤炭科学技术
  • 年:2019
  • 期:v.47;No.530
  • 基金:国家自然科学基金资助项目(51374011);; 安徽省重点科学研究基金资助项目(KJ2018A0758,KJ2018A0184)
  • 语种:中文;
  • 页:MTKJ201901064
  • 页数:8
  • CN:01
  • ISSN:11-2402/TD
  • 分类号:204-211
摘要
为了研究影响煤巷安全和稳定性的层状顶板结构承载能力衰减问题,采用理论推导、数字试验和相似模拟方法,建立了巷道层状顶板三向承载梁结构的物理和力学模型,依据Drucker-Prager强度准则提出了巷道层状顶板三向承载梁结构的弹塑性分析方法,基于三向承载梁结构的承载机理和极限平衡理论,以淮南张集矿17246工作面轨道巷顶板为分析对象,通过Matlab等数值计算软件,推导出了特定工程地质条件下三向承载梁结构峰后软化阶段和残余承载阶段的极限承载应力及其影响规律。结果表明:巷道层状顶板呈现层状分布、相互作用、分区承载的三维长板结构;基于应力通过岩层逐层传递特性,可求解出岩层当中任意岩层上的作用应力;巷道顶板三向承载梁结构的压剪破坏判断值f<0表示该点进入压剪破坏状态,f=0表示该点达到压剪破坏的临界状态,f>0表示该点仍处于弹性承载状态;煤巷顶板在峰后残余阶段依然具有一定的承载能力,计算得到试验巷道层状顶板的极限承载应力约为5.1MPa,残余承载应力约为2.9 MPa;煤巷开挖后顶板经历弹性承载、弹塑性承载、塑性承载,当顶板处于峰后残余承载时,顶板结构受到外界应力扰动可能发生大变形灾害;随着围压的增加,岩体的峰值抗压强度、残余抗压强度均呈增加趋势。该研究结果揭示了顶板结构承载能力弱化的本质。
        In order to solve the problem about attenuation of bearing capacity of roof structure which affects safety and stability of roadway,theoretical derivation,digital experiments and analog simulation method were undertaken to establish a physical and mechanical model of triaxial beam structure of roadway laminated roof.Based on the strength criterion of the Drucker-Prager type,an elastic-plastic analysis method of the triaxial board and bend structure of roadway laminated roof was proposed.The roadway roof of the No.17246 working face in Zhangji Coal Mine in Huainan was analyzed as the object.Based on bearing mechanism and limit equilibrium theory of triaxial beam structure,the ultimate bearing capacity of triaxial beam structure and its influence rule at the post-peak strain-softening stage and residual carrying stage under the special engineering geological condition was deduced with numerical computation software such as Matlab.The results showed that the roadway laminated roof had a long plate structure with lamellar distribution,interaction and partial weight bearing.Based on the characteristic that stress transfers layer by layer through a rock formation,the applied stresses on any rocks in the rock formation could be figured out.The value f was used to determine if shear and compression failure in the triaxial beam structure of roadway roof occur: while f < 0,it was at a shear and compression failure state;while f = 0,it was at the critical state of shear and compression failure; while f > 0,it was at an elastic bearing state and coal roadway roof still had a certain carrying capacity at the post-peak residual stage.The calculation results were obtained that the ultimate load bearing capacity of the roadway roof was about 5.1 MPa and the residual load bearing stress was about 2.9 MPa.Once the excavation of coal roadway begins,roof would undergo elastic bearing,elastic-plastic bearing and plastic bearing.When roof was at the post-peak residual bearing stage and roof structure was perturbated by external stress,a large deformation disaster would probably occur.As confining pressure increases,there are a rising tendency in the rock peak compression strength and the residual compressive strength.The study results revealed the essence of loading capacity weakening of roof structure.
引文
[1]袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(1):1-7.YUAN Liang. Scientific conception of precision coal mining[J].Journal of China Coal Society,2017,42(1):1-7.
    [2]周波,袁亮,薛俊华,等.巷道顶板三维板梁结构的传力机制研究[J].中国安全生产科学技术,2017,13(12):131-137.ZHOU Bo,YUAN Liang,XUE Junhua,et al.Study on force transfer mechanism of roadway roof with three-dimensional plate girder structure[J]. Journal of Safety Science and Technology,2017,13(12):131-137.
    [3]李树清,王卫军,潘长良.深部巷道围岩承载结构的数值分析[J].岩土工程学报,2006,28(3):377-381.LI Shuqing,WANG Weijun,PAN Changliang. Numerical analysis on support structure of rock around deep roadway[J]. Chinese Journal of Geotechnical Engineering,2006,28(3):377-381.
    [4]李树刚,成小雨,刘超,等.破碎围岩动压巷道锚索支护与注浆加固技术研究[J].煤炭科学技术,2016,44(1):67-72.LI Shugang,CHENG Xiaoyu,LIU Chao,et al.Research on technology of anchor cable supporting and grouting reinforcement for dynamic pressurized tunnel with crushed surrounding rock[J]. Coal Science and Technology,2016,44(1):67-72.
    [5]马振乾,姜耀东,吴桂义,等.厚层泥质顶板巷道支护难度分级研究与应用[J].中国安全科学学报,2017,27(11):121-125.MA Zhenqian,JIANG Yaodong,WU Guiyi,et al. Research on support difficulty classification for roadways with thick mudstone roof and its application[J].China Safety Science Journal,2017,27(11):121-125.
    [6]辛亚军,安定超,李梦远.巷道围岩再造承载层机理及数值模拟[J].中国安全生产科学技术,2016,12(6):36-41.XIN Yajun,AN Dingchao,LI Mengyuan. Mechanism and numerical simulation of renewable bearing stratum in roadway surrounding rock[J].Journal of Safety Science and Technology,2016,12(6):36-41.
    [7]王猛,柏建彪,王襄禹,等.迎采动面沿空掘巷围岩变形规律及控制技术[J].采矿与安全工程学报,2012,29(2):197-202.WANG Meng,BAI Jianbiao,WANG Xiangyu,et al. The surrounding rock deformation rule and control technique of the roadway driven along goaf and heading fore adjacent advancing coal face[J].Journal of Mining and Safety Engineering,2012,29(2):197-202.
    [8]周波,袁亮,薛生.巷道围岩结构稳定性控制机理研究综述[J].煤矿安全,2018,49(5):214-217,221.ZHOU Bo,YUAN Liang,XUE Sheng.Study review on sructural stability control mechanism of roadway surrounding rock[J].Safety in Coal Mines,2018,49(5):214-217,221.
    [9] KONTOGIANNI V A,STIROS S C. Induced deformation during tunnel excavation:evidence from geodetic monitoring[J]. Engineering Geology,2005,79(1/2):115-126.
    [10] STIROS S C,KONTOGIANNI V A.Coulomb stress changes:From earthquakes to underground excavation failures[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(1):182-187.
    [11]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].2版.徐州:中国矿业大学出版社,2010:145-151.
    [12]马肖彤,包超,王秀丽,等.冲击荷载下固支梁弹塑性动力响应分析[J].兰州理工大学学报,2017,43(3):133-139.MA Xiaotong,BAO Chao,WANG Xiuli,et al. Dynamic response analysis of elasticity-plasticity of clamped beam subjected to impact load[J].Journal of Lanzhou University of Technology,2017,43(3):133-139.
    [13]王凯.主应力的计算公式[J].力学与实践,2014,36(6):783-785.WANG Kai. Calculation formulas for principal stresses[J]. Mechanics in Engineering,2014,36(6):783-785.
    [14] QIN C B,CHIAN S C,YANG X L.3D limit analysis of progressive collapse in partly weathered Hoek-Brown rock banks[J].International Journal of Geomechanics,2017,17(7):04017011.
    [15] ALEJANO L R,BOBET A.Drucker-Prager criterion[M].Berlin:Springer International Publishing,2015.
    [16]刘泉声,魏莱,刘学伟,等.基于Griffith强度理论的岩石裂纹起裂经验预测方法研究[J].岩石力学与工程学报,2017,36(7):1561-1569.LIU Quansheng,WEI Lai,LIU Xuewei,et al. A revised empirical method for predicting crack initiation based on Griffith strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(7):1561-1569.
    [17] LABUZ J F,ZANG A. Mohr-Coulomb failure criterion[M].Berlin:Springer International Publishing,2015.
    [18]俞茂宏.岩土类材料的统一强度理论及其应用[J].岩土工程学报,1994,16(2):1-10.YU Maohong.Unified strength theory for geomaterials and its applications[J]. Chinese Journal of Geotechnical Engineering,1994,16(2):1-10.
    [19]郭明伟,邓琴,李春光,等.巴西圆盘试验问题与三维抗拉强度准则[J].岩土力学,2008,29(11):545-549,554.GUO Mingwei,DENG Qin,LI Chunguang,et al.Brazilian disc test and 3-D tensile strength principle[J].Rock and Soil Mechanics,2008,29(11):545-549,554.
    [20]陈梁,茅献彪,李明,等.基于Drucker-Prager准则的深部巷道破裂围岩弹塑性分析[J].煤炭学报,2017,42(2):484-491.CHEN Liang,MAO Xianbiao,LI Ming,et al.Elastoplastic analysis of cracked surrounding rock in deep roadway based on DruckerPrager criterion[J].Journal of China Coal Society,2017,42(2):484-491.
    [21]张信贵,许胜才,严利娥,等.Drucker-Prager准则参数有效性及第二主应力对强度的影响分析[J].应用力学学报,2015,32(5):810-816.ZHANG Xingui,XU Shengcai,YANG Li’e,et al.Drucker-Prager criterion parameter validation and second principal stress effect on the strength analysis[J]. Chinese Journal of Applied Mechanics,2015,32(5):810-816.
    [22]王水林,郑宏,刘泉声,等.应变软化岩体分析原理及其应用[J].岩土力学,2014,35(3):609-622,630.WANG Shuilin,ZHENG Hong,LIU Quansheng,et al.Principle of analysis of strain-softening rock mass and its application[J].Rock and Soil Mechanics,2014,35(3):609-622,630.
    [23]余俊,李真,潘伟波,等.考虑黏聚力弱化的岩石软化模型研究[J].铁道科学与工程学报,2016,13(6):1039-1045.YU Jun,LI Zhen,PAN Weibo,et al.Research on softening model of rock with the weakening of cohesion[J]. Journal of Railway Science and Engineering,2016,13(6):1039-1045.
    [24]袁超,王卫军,赵延林,等.考虑岩体塑性硬化与软化特性的巷道围岩变形理论分析[J].煤炭学报,2015,40(S2):311-319.YUAN Chao,WANG Weijun,ZHAO Yanlin,et al. Theoretical analysis on roadway surrounding rock deformation based on the properties of rock plastic hardening and softening[J]. Journal of China Coal Society,2015,40(S2):311-319.
    [25]张平,李宁,贺若兰.含裂隙类岩石材料的局部化渐进破损模型研究[J].岩石力学与工程学报,2006,25(10):2043-2050.ZHANG Ping,LI Ning,HE Ruolan.Research on localized progressive damage model for fractured rockike materials[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(10):2043-2050.
    [26]周波,袁亮,薛生.煤巷顶板围岩结构承载能力弱化分析[J].中国安全生产科学技术,2018,14(9):122-128.ZHOU Bo,YUAN Liang,XUE Sheng. Analysis on bearing capacity weakening of surrounding rock structure at roof of coal roadway[J].Journal of Safety Science and Technology,2018,14(9):122-128.
    [27]黄兴,刘泉声,康永水,等.砂质泥岩三轴卸荷蠕变试验研究[J].岩石力学与工程学报,2016,35(S1):2653-2662.HUANG Xing,LIU Quansheng,KANG Yongshui,et al.Triaxial unloading creep experimental study of sandy mudstone[J]Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):2653-2662.
    [28]解廷堃,李二利,刘如成.炭质页岩常规三轴试验和本构方程的研究[J].露天采矿技术,2008,(6):7-10,12.XIE Tingkun,LI Erli,LIU Rucheng. Research on carbonaceous shale general tri-axial test and costitutive equation[J]. Opencast Mining Technology,2008,(6):7-10,12.
    [29]刘泉声,刘恺德,朱杰兵,等.高应力下原煤三轴压缩力学特性研究[J].岩石力学与工程学报,2014,33(1):24-34.LIU Quansheng,LIU Kaide,ZHU Jiebing,et al. Study of mechanical properties of raw coal under high stress with taiaxial compession[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(1):24-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700