用户名: 密码: 验证码:
西藏安多地区近千年风沙活动过程及对气候变化的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aeolian activity in Amdo Area,and its response to climate change in the last 1000 years
  • 作者:黄文敏 ; 伍永秋 ; 谭利华 ; 潘美慧 ; 杜世松 ; 蒿承智
  • 英文作者:HUANG Wenmin;WU Yongqiu;TAN Lihua;PAN Meihui;DU Shisong;HAO ChengZhi;MOE Engineering Center of Desertification and Blown-sand Control,Beijing Normal University;Faculty of Geographical Science,Beijing Normal University;The Second High School Attached to Beijing Normal University(Beijing Future Science Park School);College of Geography and Environment Science,Northwest Normal University;
  • 关键词:西藏安多 ; 粒度特征 ; 风沙活动 ; 气候响应
  • 英文关键词:Amdo Area;;grain size characteristics;;aeolian activity;;response
  • 中文刊名:BSDZ
  • 英文刊名:Journal of Beijing Normal University(Natural Science)
  • 机构:北京师范大学防沙治沙教育部工程研究中心;北京师范大学地理科学学部地理学院;北京师范大学第二附属中学未来科技城学校;西北师范大学地理与环境科学学院;
  • 出版日期:2018-06-15
  • 出版单位:北京师范大学学报(自然科学版)
  • 年:2018
  • 期:v.54
  • 基金:国家重点基础研究发展计划(973计划)课题资助项目(2013CB956001);; 国家自然科学基金资助项目(41071129)
  • 语种:中文;
  • 页:BSDZ201803015
  • 页数:8
  • CN:03
  • ISSN:11-1991/N
  • 分类号:101-108
摘要
青藏高原历史时期存在广泛的风沙活动,而关于高原中部历史时期的风沙活动的研究较少.本文选择高原中部安多地区柴荣(CR)风成沉积剖面,采用OSL测年方法建立剖面年代序列,以粒度为主要风沙活动代用指标,结合磁化率、碳酸钙、有机质指标,揭示安多地区近千年来风沙活动过程,探讨风沙活动对高原近千年几个气候特征时期的响应,结果表明,安多地区千年来风沙活动可划分为5个阶段:1)1310年以前约300a,风沙活动很弱,气候温暖湿润;2)1310—1660年为气候稳定的过渡阶段,风沙活动较弱,气候相对温暖湿润,其中1450—1570年风沙活动进一步减弱,出现小幅的升温;3)1660—1890年风沙活动强烈,气候寒冷干燥,其中1780—1860年为小冰期中的距今最近一次冷事件;4)1890—1940年风沙活动很弱,进入20世纪暖期的升温阶段;5)1940年至今,风沙活动再次加强,转为冷干的气候环境,但其寒冷程度不及小冰期.柴荣剖面风沙活动所记录近千年气候变化与高原文献记录较为一致,但反映的气候特征事件并不完整.中世纪暖期(持续到1310年)与高原中部、中北部和东北部湖泊具有很好的一致性.小冰期(1660—1890年)的起始时间比高原东北部、西部和中北部反映的晚200~300a,比高原中部的记录晚约150a.小冰期结束时间与整个高原记录一致,其中体现的冷事件与高原其他记录所指示的距今最近的一次冷事件时间相同.20世纪暖期的起始时间与高原其他记录的时间一致,1890—1940年的暖湿阶段和1940年以来的冷干阶段也与高原东北部、西部的研究结果相符.
        Aeolian activities are known to exist widely in the Tibetan Plateau in historical periods,about which very little research has been done on the middle plateau.In the present work,aeolian deposition of the Amdo Area CR profile in the middle plateau was investigated.Optically Stimulated Luminescence(OSL)dating was used to establish chronology sequence of CR profiles,and the grain size,magnetic susceptibility,calcium carbonate and organic content of the deposits were analysed to reconstruct the aeolian processes for the last1000 years in the Amdo Area by CR profile.Then,the response to several characteristic climatic periods of the last 1000 years in Tibetan Plateau was discussed.Aeolian activity in Amdo Area during the last 1000 years was found to have experienced 5 stages.About 300 years before 1310,with weak aeolian activity,the profile showed water dynamic action and indicated warm-humid climate.Being a stable transition stage from 1310 to1660,the climate became warm-humid with weak wind from 1450 to 1570,the aeolian activity further weakened with slight warming.The period from 1660-1890 was with cool-dry climate and strong wind.From1780-1860 aeolian activity became more intense and responded with the most recent cold events in the little ice age.From 1890-1940,aeolian activity was very weak,entering the warm period of the 20 th century.From1940,the Aeolian activity strengthened again and the climate became cool-dry,but with much less LIA.The paleo-aeolian depositional record of CR in central Qinghai-Tibet Plateau has a better response to climate change in the last 1000 years,which is consistent with other climate records in different parts of Qinghai-Tibet Plateau.But CR profile cannot completely reflect characteristic climatic events for the last 1000 years.The Medieval Warm Period(until 1310)had good consistency with lacustrine deposits from central,northern and northeastern part of the Qinghai-Tibet.The starting time of the Little Ice Age(1660-1890)is about 200 years later than reflected by the northeastern,western and northen part of the Qinghai-Tibet,and about 150 years later than reflected by the central part of the Qinghai-Tibet.The end time of the Little Ice Age is consistent throughout the whole plateau.The cold event derived from CR profile agreed with the more recent cold event from other records.The starting time of the 20 th century warming period is consistent with other proxy data.Both the warm and wet phase(1890-1940)and the cold and dry period(1940-)showed unanimous agreement with research on the northeastern,western part of the Qinghai-Tibet Plateau.
引文
[1]董光荣,李森,李保生,等.中国沙漠形成演化的初步研究[J].中国沙漠,1991,11(4):27
    [2]PARKER E J,BLOEMENDAR J.Aeolian process and pedogenesis under the influence of the East Asian monsoon:a statistical approach to particle-size distribution variability[J].Sedimentary Geology,2005,181(3/4),195
    [3]陈发虎,潘保田,陈国荣,等.兰州地区晚更新世古风成砂的发现及环境变化[J].中国沙漠,1990,10(2):1
    [4]苏志珠,马义娟.晋西北地区末次盛冰期古风成砂的发现及环境演化[J].中国沙漠,1997,17(4):389
    [5]郑度,林振耀,张雪芹.青藏高原与全球环境变化研究进展[J].地学前缘,2002,9(1):95
    [6]STAUCH G,LJMKER J,PTSCH S,et al.Aeolian sediments on the north-eastern Tibetan Plateau[J].Quaternary Science Reviews,2012,57(60):71
    [7]李森,杨萍,董玉祥,等.西藏土地沙漠化及其防治[M].北京:科学出版社,2010
    [8]朱文琴,陈隆勋,周自江.现代青藏高原气候变化的几个特征[J].中国科学:D辑地球科学,2001(S1):327
    [9]姚正毅,屈建军.青藏铁路格尔木-拉萨段风成沙物源及其粒度特征[J].中国沙漠,2012,32(2):300
    [10]张寅生,马颖钊,张艳林,等.青藏高原坡面尺度冻融循环与水热条件空间分布[J].科学通报,2015,60(7):664
    [11]KRUMBEIN W C,PETTIJOHN F J.Manual of Sedimentary Peteology[M].United States:AppletonCentury-Crofts,1938:549
    [12]FOLK R L,WARD W C.Brazos river bar:a study in the significance of grain size parameters[J].Journal of Sedimentary Petrology,1957,27(1):3
    [13]丁喜桂,叶思源,宫少军,等.黄河三角洲ZK1孔岩心环境敏感粒度组分及沉积环境分析[J].世界地质,2010,29(4):575
    [14]LAI Z P.Chronlogy and the upper dating limit for loess samples from Luochuan section in Chinese Loess Plateau using quartz OSL SAR protocol[J].Journal of Asian Earth Sciences,2010,37:176
    [15]REES-JONES J.Optical dating of young sediments using fine-grain quartz[J].Ancient TL,1995,13(2),9
    [16]吴正.风沙地貌学[M].北京:科学出版社,1987:167
    [17]THOMPSON L G.Evidence for asynchronous glaciation:the ice core record from the Tibetan Plateau[C]∥Programs and Abstracts of the 4th International Symposium on the Tibetan Plateau.Tibet,Lhasa:Chinese Academy of Sciences(CAS),The Peoples Government of Tibet Autonomous Region(TAR)of PR China,2004:1
    [18]汪青春,周陆生,秦宁生,等.利用乌兰树木年轮重建托托河冬季气温序列[J].高原气象,2003,22(5):518
    [19]王永波,刘兴起,羊向东,等.可可西里库赛湖揭示的青藏高原北部近4 000年来的干湿变化[J].湖泊科学,2008,20(5):605
    [20]吴艳宏,LCKE A,WUNNEMANN B,等.青藏高原中部全新世气候变化的湖泊沉积地球化学记录[J].中国科学:D辑地球科学,2007,37(9):1185
    [21]张宏亮,李世杰,于守兵,等.青藏高原全新世环境变化的兹格塘错元素地球化学沉积记录[J].山地学报,2009,27(2):248
    [22]李世杰,WUNNEMANN B,夏威岚,等.青藏高原兹格塘错沉积记录的全新世水位变化事件及其原因初步研究[J].地学前缘,2009,16(6):162
    [23]沈吉,刘兴起,MATSUMOTO R,等.晚冰期以来青海湖沉积物多指标高分辨率的古气候演化[J].中国科学:D辑地球科学,2004,34(6):582
    [24]强明瑞,陈发虎,张家武,等.2 000a来苏干湖沉积碳酸盐稳定同位素记录的气候变化[J].科学通报,2005,50(13):1385
    [25]张恩楼,沈吉,王苏民,等.青海湖近900年来气候环境演化的湖泊沉积记录[J].湖泊科学,2002,14(1):32
    [26]邵雪梅,黄磊,刘洪滨,等.树轮记录的青海德令哈地区千年降水变化[J].中国科学:D辑地球科学,2004,34(2):145
    [27]勾晓华,陈发虎,杨梅学,等.青藏高原东北部树木年轮记录揭示的最高最低温的非对称变化[J].中国科学:D辑地球科学,2007,37(11):1480
    [28]姚檀栋,杨梅学,康兴成.从古里雅冰芯与祁连山树轮记录看过去2000年气候变化[J].第四纪研究,2001,21(6):514
    [29]姚檀栋,焦克勤,李忠勤,等.古里雅冰帽气候环境记录[J].中国科学:B辑,1994,24(7):766
    [30]王宁练,姚檀栋,蒲建辰,等.青藏高原北部马兰冰芯记录的近千年来气候环境变化[J].中国科学:D辑地球科学,2006,36(8):723
    [31]刘业祥.青藏高原崇测冰芯气候与环境记录[D].长沙:湖南师范大学,2007
    [32]刘晓宏,秦大河,邵雪梅,等.祁连山中部过去近千年温度变化的树轮记录[J].中国科学:D辑地球科学,2004,34(1):89
    [33]时兴合,秦宁生,邵雪梅,等.青海湖流域圆柏年轮指示的近千年降水变化[J].湖泊科学,2009,21(4):579
    [34]王绍武,王日昇.中国的小冰河期[J].科学通报,1990,35(10):769

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700