用户名: 密码: 验证码:
自然植被物候遥感提取精度评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of the accuracy of phenology extraction methods for natural vegetation based on remote sensing
  • 作者:张晓萱 ; 崔耀平 ; 刘素洁 ; 李楠 ; 付一鸣
  • 英文作者:ZHANG Xiao-xuan;CUI Yao-ping;LIU Su-jie;LI Nan;FU Yi-ming;College of Environment and Planning,Henan University;
  • 关键词:叶面积指数 ; 方法比较 ; 植被物候期 ; 站点尺度 ; 偏差一致性
  • 英文关键词:leaf area index;;method comparison;;vegetation phenophase;;site scale;;deviation consistency
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:河南大学环境与规划学院;
  • 出版日期:2019-01-31 11:29
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.310
  • 基金:国家自然科学基金项目(41671425,41401504)资助
  • 语种:中文;
  • 页:STXZ201905038
  • 页数:11
  • CN:05
  • ISSN:21-1148/Q
  • 分类号:325-335
摘要
利用遥感开展植被物候的研究涉及到物候提取方法这一基本问题,但当前不同方法的优劣尚无定论,亟待开展不同方法的综合评价。本研究利用2009年的叶面积指数数据,基于18种植被物候遥感提取组合,联立23个地面站点的物候观测数据,利用偏差等5个定量指标综合评价不同遥感提取组合对植被生长季开始时期(SOS)、结束时期(EOS)和长度(LOS)的提取精度。结果表明:基于SG-Sa 0.1(SG滤波法+阈值为0.1的季节性振幅法)组合能够较好地提取地面23个站点的总体植被物候;针对单个物候期,SOS、EOS和LOS的最优方法分别为SG-Sa 0.1、SG-Sa 0.3和DL-Sa 0.1,但提取结果与地面观测物候日期的最小偏差均超过5 d,显示了利用时间分辨率为8 d的遥感数据提取植被物候可以达到的精度水平; SOS、EOS和LOS各自最优与对应的最差方法提取的物候期差值分别可达到-51.55、19.06和86.33 d,说明选取适宜遥感提取方法的重要性。此外,遥感提取物候和地面观测物候不能完全匹配,采用多重评价方法,特别是偏差一致性方法可以有效选取出最优的遥感提取组合。
        Analyzing vegetation phenology is the key step for the accuracy evaluation of extraction methods using remote sensing. There is no consensus about the advantages and disadvantages of different methods. It is necessary to comprehensively evaluate the accuracy of various extraction methods. In this study,18 combining methods for vegetation phenology remote sensing extraction and observation data from 23 ground phenology stations were used to evaluate the accuracy in extracting three key vegetation phenophases: Start Of the growing Season( SOS),End Of the growing Season( EOS) and Length Of the growing Season( LOS). The results showed that SG-Sa 0.1( the combining Savitzky-Golay filter and Seasonal Amplitude method with a threshold of 0.1) had the optimal recognition effect. For single phenophase,the optimal combination for SOS,EOS and LOS was SG-Sa 0.1,SG-Sa 0.3 and DL-Sa 0.1,respectively. The minimum deviation between the optimal extraction results and the ground-based observation phenology data were more than five days,indicating the accuracy of extraction phenology using remote sensing data with 8-day temporal resolution. The deviation highlighted the importance of choosing a suitable extraction combination. In addition,remote sensing phenology and ground-based phenology cannot completely match. Therefore,the multiple evaluation indices used in this study,especially the deviation consistency can effectively select the optimal vegetation phenology remote sensing extraction combination for various phenophases.
引文
包晓影,崔树娟,王奇,等.2017.草地植物物候研究进展及其存在的问题.生态学杂志,36(8):2321-2326.
    崔耀平,刘纪远,胡云锋,等.2012.中国植被生长的最适温度估算与分析.自然资源学报,27(2):281-292.
    崔耀平,肖登攀,刘素洁,等.2018.中国夏玉米和冬小麦近年生育期变化及其与气候的关系.中国生态农业学报,26(3):388-396.
    范德芹,朱文泉,潘耀忠,等.2014.青藏高原小嵩草高寒草甸返青期遥感识别方法筛选.遥感学报,18(5):1117-1127.
    方修琦,余卫红.2002.物候对全球变暖响应的研究综述.地球科学进展,17(5):714-719.
    游松财,宋春桥,柯灵红,等.2011.基于MODIS植被指数的藏北高原植被物候空间分布特征.生态学杂志,30(7):1513-1520.
    Antonucci S,Deslauriers A,Lombardi F,et al.2017.Largescale estimation of xylem phenology in black spruce through remote sensing.Agricultural and Forest Meteorology,233:92-100.
    Balzarolo M,Vicca S,Nguyrobertson AL,et al.2016.Matching the phenology of Net Ecosystem Exchange and vegetation indices estimated with MODIS and FLUXNET in-situ observations.Remote Sensing of Environment,174:290-300.
    Cai ZZ,Jnsson P,Jin HX,et al.2017.Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data.Remote Sensing,9:1271.
    Chen J,Jnsson P,Tamura M,et al.2004.A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter.Remote Sensing of Environment,91:332-344.
    Cui YP.2013.Preliminary estimation of the realistic optimum temperature for vegetation growth in China.Environmental Management,52:151-162.
    Eklundh L,Jnsson P.2017.TIMESAT 3.3 Software Manual.Lund University Press.
    Fang HL,Ye YC,Liu WW,et al.2018.Continuous estimation of canopy leaf area index(LAI)and clumping index over broadleaf crop fields:An investigation of the PASTIS-57instrument and smartphone applications.Agricultural and Forest Meteorology,253-254:48-61.
    Fisher JI,Mustard JF.2007.Cross-scalar satellite phenology from ground,Landsat,and MODIS data.Remote Sensing of Environment,109:261-273.
    Forkel M,Migliavacca M,Thonicke K,et al.2015.Codominant water control on global interannual variability and trends in land surface phenology and greenness.Global Change Biology,21:3414-3435.
    Geng LY,Ma MG,Wang XF,et al.2014.Comparison of eight techniques for reconstructing multi-satellite sensor timeseries NDVI data sets in the Heihe River Basin,China.Remote Sensing,6:2024-2049.
    Gonsamo A,Chen JM,Wu CY,et al.2012.Predicting deciduous forest carbon uptake phenology by upscaling FLUXNETmeasurements using remote sensing data.Agricultural and Forest Meteorology,201:18-20.
    Han QF,Luo GP,Li CF.2013.Remote sensing-based quantification of spatial variation in canopy phenology of four dominant tree species in Europe.Journal of Applied Remote Sensing,7:073485.
    Hird JN,Mcdermid GJ.2009.Noise reduction of NDVI time series:An empirical comparison of selected techniques.Remote Sensing of Environment,113:248-258.
    Huete A,Didan K,Miura T,et al.2002.Overview of the radiometric and biophysical performance of the MODIS vegetation indices.Remote Sensing of Environment,83:195-213.
    Ivits E,Cherlet M,Mehl W,et al.2013.Ecosystem functional units characterized by satellite observed phenology and productivity gradients:A case study for Europe.Ecological Indicators,27:17-28.
    Ivits E,Cherlet M,Tóth G,et al.2012.Combining satellite derived phenology with climate data for climate change impact assessment.Global&Planetary Change,88-89:85-97.
    Jeong SJ,Ho CH,Gim HJ,et al.2011.Phenology shifts at start vs.end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008.Global Change Biology,17:2385-2399.
    Jnsson P,Eklundh L.2004.TIMESAT-A program for analyzing time-series of satellite sensor data.Computers&Geosciences,30:833-845.
    Julien Y,Sobrino JA.2010.Comparison of cloud-reconstruction methods for time series of composite NDVI data.Remote Sensing of Environment,114:618-625.
    Kang S,Running SW,Lim JH,et al.2003.A regional phenology model for detecting onset of greenness in temperate mixed forests,Korea:An application of MODIS leaf area index.Remote Sensing of Environment,86:232-242.
    Misra G,Buras A,Menzel A.2016.Effects of different methods on the comparison between land surface and ground phenology-A methodological case study from south-western Germany.Remote Sensing,8:753.
    Pastorguzman J,Dash J,Atkinson PM.2018.Remote sensing of mangrove forest phenology and its environmental drivers.Remote Sensing of Environment,205:71-84.
    Roerink GJ,Menenti M,Verhoef W.2000.Reconstructing cloudfree NDVI composites using Fourier analysis of time series.International Journal of Remote Sensing,21:1911-1917.
    Savitzky A,Golay MJE.1964.Smoothing and differentiation of data by simplified least squares procedures.Analytical Chemistry,36:1627-1639.
    Shang R,Liu RG,Xu MZ,et al.2018.Determining the start of the growing season from MODIS data in the Indian monsoon region:Identifying available data in the rainy season and modeling the varied vegetation growth trajectories.Remote Sensing,10:122.
    Studer S,Stckli R,Appenzaller C,et al.2007.A comparative study of satellite and ground-based phenology.International Journal of Biometeorology,51:405-414.
    Testa S,Soudani K,Boschettil L,et al.2018.MODIS-derived EVI,NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests.International Journal of Applied Earth Observation and Geoinformation,64:132-144.
    Viovy N,Arino O,Belward AS.1992.The Best Index Slope Extraction(BISE):A method for reducing noise in NDVItime-series.International Journal of Remote Sensing,13:1585-1590.
    Wang C,Li J,Liu QH,et al.2017.Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index.Sensors,17:1982.
    Wu CY,Gough CM,Chen JM,et al.2013.Evidence of autumn phenology control on annual net ecosystem productivity in two temperate deciduous forests.Ecological Engineering,60:88-95.
    Xu D,Fu MC.2015.Detection and modeling of vegetation phenology spatiotemporal characteristics in the middle part of the Huai River Region in China.Sustainability,7:2841-2857.
    Zhang Q,Kong DD,Shi PY,et al.2018.Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change(1982-2013).Agricultural and Forest Meteorology,248:408-417.
    Zhang XY,Friedl MA,Schaaf CB,et al.2003.Monitoring vegetation phenology using MODIS.Remote Sensing of Environment,84:471-475.
    Zhou J,Jia L,Menenti M.2015.Reconstruction of global MO-DIS NDVI time series:Performance of Harmonic ANalysis of Time Series(HANTS).Remote Sensing of Environment,163:217-228.
    Zu JX,Zhang YJ,Huang K,et al.2018.Biological and climate factors co-regulated spatial-temporal dynamics of vegetation autumn phenology on the Tibetan Plateau.International Journal of Applied Earth Observation and Geoinformation,69:198-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700