用户名: 密码: 验证码:
斜长石、辉石混合模型的电导率有限元数值计算研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation study on the electrical conductivity of plagioclase-pyroxene mixed models
  • 作者:郭颖星 ; 张东宁 ; 祝爱玉 ; 郑军 ; 佟莉
  • 英文作者:GUO YingXing;ZHANG DongNing;ZHU AiYu;ZHENG Jun;TONG Li;Institute of Geophysics,China Earthquake Administration;Key Laboratory of Seismic Observation and Geophysical Imaging;School of Geophysics and Information Technology,China University of Geosciences (Beijing),Beijing 100083,China;Tianjin North China Geological Exploration Bureau;Beijing Municipal Institute of Labor Protection;
  • 关键词:有限元数值模拟 ; 矿物混合模型 ; 电导率
  • 英文关键词:Finite element simulation;;Mineral mixture models;;Electrical conductivity
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国地震局地球物理研究所;中国地震局地震观测与地球物理成像重点实验室;中国地质大学(北京)地球物理与信息技术学院;天津华北地质勘查局;北京市劳动保护科学研究所;
  • 出版日期:2018-09-11
  • 出版单位:地球物理学报
  • 年:2018
  • 期:v.61
  • 基金:中国地震局基本业务专项(DQJB16B06);; 国家自然科学基金项目(41504079)(21607009)共同资助
  • 语种:中文;
  • 页:DQWX201809020
  • 页数:13
  • CN:09
  • ISSN:11-2074/P
  • 分类号:214-226
摘要
以岩石实验中矿物的几何形态及空间分布为建模依据,以实验条件及单矿物电导率的测量结果为约束条件,用有限元数值方法模拟了不同微观结构的斜长石、辉石混合物在施加电压后电势及电流的分布情况,并计算了混合模型在不同温度条件下的电导率.研究结果显示,数值模型网格数及矿物颗粒数的选取对电导率计算结果的精度有较大影响,在体导电情况下,模型电导率因矿物比例含量和排列结构而异.当斜长石及辉石随机分布时,随着辉石含量的增加,混合模型电导率在不同温度下均有所增加,且温度越高,增加幅度越大,电导率的有限元模拟计算结果接近于有效介质渗透理论模型,且位于并、串联模型之间以及HS模型的上、下边界范围内;在斜长石及辉石含量一定的情况下,各矿物的排列分布对电导率计算结果也有一定的影响,当矿物颗粒大小接近且分布均匀时,模型中电势沿电流传导方向变化较为均匀,模拟计算得出的电导率相对较高,当矿物颗粒大小差别较大及分布不均匀时,电势分布受到一定的扰动,电导率计算结果也较低.将混合模型电导率有限元计算结果与辉长岩、辉绿岩及玄武岩实验测量结果进行比较,显示这3种岩石样品电导率与温度变化关系的斜率均与混合模型计算结果的斜率相接近,表明这些岩石在所选温度段导电机制与斜长石、辉石混合模型相似,用斜长石、辉石混合模型的电导率研究玄武岩、辉长岩及辉绿岩的导电性具有适用性.将混合模型有限元计算结果与玄武岩、辉长岩、辉绿岩覆盖区地壳大地电磁实测结果对比,发现大地电磁电导率结果位于混合模型计算结果范围内,用斜长石、辉石混合模型模拟玄武岩、辉长岩等岩石地壳具有一定的可行性.
        The finite element numerical simulation method was used to investigate the electricalconductivity and potential distribution of plagioclase-pyroxene mixed models.The two-dimensional mineral mixed models were constrained by the experimental measurement conditions,the experimental results of electrical conductivities for single minerals,and the geometrical shapes and spatial distribution of the minerals.The results show that the amount of model mesh and that of the mineral particles strongly influenced the accuracy of the calculation results.The electrical conductivities of the mixed models varied with the composition ratio and mineral arrangement structure and increased with increasing pyroxene content at same temperatures;the increase was sharper at high temperatures.The results of the finite element numerical simulation closely corresponded to those of the effective medium percolation theory model,which lies within the range of the electrical conductivity of the parallel structure model and series structure model,and lies within that of the HS+model and HS-model,either.At certain concentrations of plagioclase and pyroxene,the electrical conductivities of mixed models were relatively higher when the models had uniform distribution of mineral particles,and the electric potentials decreased smoothly from the top to the bottom of the model.However,the electrical conductivities were smaller with uneven distribution of mineral particles,and the distribution of electrical potentials was disturbed.By comparing the electrical conductivity between the experimental results of gabbro,diabase,basalt,and finite element calculation results,we found that the slope of the logarithm(electrical conductivity)versus reciprocal temperature closely corresponded to that of the mineral mixed model.This indicated that the conductive mechanisms of the abovementioned three rocks were similar to those of the plagioclase-pyroxene mixed models in the selected temperature range,and the finite element numerical calculation for basalt,gabbro,and diabase were applied to the mixed models.When applied to the crust containing gabbro,diabase,and basalt,the result of geophysical conductivity profiles lay within the range of the mineral mixed model.This correlation of the simulation results and field conductivities indicates that simulating the rock crust with the mineral mixed models in certain proportions was feasible to a certain extent.
引文
ADINAR&D,Inc.2012.Theory and modeling guide Volume II:ADINA heat transfer.Report ARD 12-9.
    Bai L P,Du J G,Liu W,et al.2003.Experimental studies of electrical conductivities and P-wave velocities of gabbro at high pressures and high temperatures.Science in China Series D:Earth Sciences,46(9):895-908.
    Bai W M,Xie H S,Hou W.2005.The layered structure,mechanical properties and high pressure phases change of the earth′s mantle.Physics(in Chinese),34(2):115-122.
    Beekmans N M,Heyne L.1976.Correlation between impedance,microstructure,and composition of calcia-stabilized zirconia.Electrochimica Acta,21,303-310.
    Cheng Y Z,Tang J,Chen X B,et al.2015.Electrical structure and seismogenic environment along the border region of Yunnan,Sichuan and Guizhou in the south of the North-South seismic belt.Chinese Journal of Geophysics(in Chinese),58(11):3965-3981,doi:10.6038/cjg20151107.
    Dai L D,Li H P,Liu C Q,et al.2005.In situ control of oxygen fugacity experimental study on the crystallographic anisotropy of the electrical conductivities ofdiopside at high temperature and high pressure.Acta Petrologica Sinica(in Chinese),21(6):1737-1742.
    Dai L D,Karato S I.2009.Electrical conductivity of pyrope-rich garnet at high temperature and high pressure.Physics of the Earth&Planetary Interiors,176(1-2):83-88.
    Dai L D,Li H P,Hu H Y,et al.2012.The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures.Contributions to Mineralogy and Petrology,163(4):689-700.
    Dai L D,Jiang J J,Li H P,et al.2015.Electrical conductivity of hydrous natural basalts at high temperatures and pressures.Journal of Applied Geophysics,112:290-297.
    Du Frane W L,Roberts J J,Toffelmier D A,et al.2005.Anisotropy of electrical conductivity in dry olivine.Geophysical Research Letters,32(L24315),doi:10.1029/2005GL023879.
    Duba A,Heard H C,Schock R N.1974.Electrical conductivity of olivine at high pressure and under controlled oxygen fugacity.Journal of Geophysical Research,79(11):1667-1673.
    Grant F S,West G F.1965.Introduction to the electrical methods.∥Shrock R R ed,Interpret at Ion Theory in Applied Geophysics.McGraw-Hill Book Company,Toronto,583.
    Guo X Z,Yoshino T,Katayama I.2011.Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3 GPa.Physics of the Earth,and Planetary Interiors,188(1-2):69-81.
    Guo Y X,Wang D J,Li D Y,et al.2013.The electrical conductivity of ophiolite in Southern Tibet.Chinese Journal of Geophysics(in Chinese),56(10):3434-3444,doi:10.6038/cjg20131019.
    Guo Y X,Wang D J,Shi Y L,et al.2014.The electrical conductivity of eclogite in Tibet and its geophysical implications.Science China Earth Sciences,57(9):2071-2078.
    Guo Y X,Wang D J,Zhou Y S,et al.2017.Electrical conductivities of two granite samples in southern Tibet and their geophysical implications.Science China Earth Sciences,60(8):1522-1532,doi:10.1007/s11430-016-9046-7.
    Guseinov A A,Gargatsev I O.2002.Electrical conductivity of alkaline feldspars at high temperatures.Izvestiya Physics of the Solid Earth,38(6):520-523.
    Hashin Z,Shtrikman S.1962.A variational approach to the theory of effective magnetic permeability of multiphase materials.Journal of Applied Physics,33,3125-3131.
    Hu H Y,Li H P,Dai L D,et al.2013.Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures.Physics and Chemistry of Minerals,40(1):51-62.
    Huang X G,Bai W M,Lan C X.2005.Review of model calculations of electrical conductivity for partially molten rocks.Progress in Geophysics(in Chinese),20(3):635-639.
    Huang X G,Xu Y S,Karato S I.2005.Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite.Nature,434(7034):746-749.
    Krajew A P.1957.Grundlagen der Geoelektrik.VEB Verlag Technik,Berlin,358.
    Kurtz R D,Ostrowski J A,Niblett E R.1986.A Magnetotelluric survey over the east bull lake gabbro-anorthosite complex.Journal of Geophysical Research:Atmospheres,91(B7):7403-7416.
    Lacam A.1983.Pressure and composition dependence of the electrical conductivity of iron-rich synthetic olivines to 200kbar.Physics and Chemistry of Minerals,9(3-4):127-132.
    Liu P H,Liu F L,Wang F,et al.2013.Petrological and geochronological preliminary study of the Xiliu~2.1Ga meta-gabbro from the Jiaobei terrane,the southern segment of the Jiao-Liao-Ji Belt in the North China Craton.Acta Petrologica Sinica(in Chinese),29(7):2371-2390.
    Long LL,Wang Y W,Tang P Z,et al.2012.A debate on the special circumstance of rock forming and ore-forming of Haladala pluton,a mafic-ultramafic complex related to CuNi-VTiFe composite mineralization,in western Tianshan.Acta Petrologica Sinica(in Chinese),28(7):2015-2028.
    Maumus J,Bagdassarov N,Schmeling H.2005.Electrical conductivity and partial melting of mafic rocks under pressure.Geochimica Et Cosmochimica Acta,69(19):4703-4718,doi:10.1016/j.gca.2005.05.010.
    Parkhomenko E I,Bondarenko A T.1986.Electrical conductivity of rocks at high pressures and temperatures.American Mineralogist,96(11-12):1821-1827.
    Poe B T,Romano C,Nestola F,et al.2010.Electrical conductivity anisotropy of dry and hydrous olivine at 8GPa.Physics of the Earth and Planetary Interiors,181(3-4):103-111.
    Ryan M P,Ingerov A,Daniels D L,et al.2004.Deep crustal magma conduits,diabase internal structure,and coupled hydrothermal processes in Mesozoic basins of eastern North America.∥AGU Spring Meeting.USA:AGU Spring Meeting Abstracts.
    Shan S M,Li H P,Dai L D,et al.2009.Influence of ionic impurities on the electrical conductivity of synthetic quartz crystals at high temperature and high pressure.Acta Mineralogica Sinica(in Chinese),29(1),109-112.
    Tyburczy J A,Fisler D K.2013.Electrical properties of minerals and melts.∥Ahrens T J ed.Mineral Physics&Crystallography:AHandbook of Physical Constants.Washington DC:American Geophysical Union,185-208.
    Waff,H.S.(1974)Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry.Journal of Geophysical Research.79,4004-4010.
    Wang D J,Li H P,Yi L,et al.2002.The electrical conductivity of gabbro at high temperature and pressure.Acta Mineralogica Sinica,22(1):81-84.
    Wang D J,Guo Y X,Yu Y J,et al.2012.Electrical conductivity of amphibole-bearing rocks:influence of dehydration.Contributions to Mineralogy and Petrology,164(1):17-25.
    Wu X P,Zheng Y F.2003.Compensation effect for electrical conductivity in minerals and its constraints on element diffusivity.Acta Petrologica Sinica(in Chinese),19(4):729-738.
    Xiang Z J,Yan Q R,Yan Z,et al.2010.Magma source and tectonic setting of the porphyritic alkaline basalts in the Silurian Taohekou Formation,North Daba Mountain:Constraints from the geochemical features of pyroxene phenocrysts and whole rocks.Acta Petrologica Sinica(in Chinese),26(4):1116-1132.
    Xu Y S.1999.Electrical conductivity of orthopyroxene and its high pressure phases.Geophysical Research Letters,26(17):2645-2648.
    Xu Y S.2000.A review on the electrical conductivity of mantle minerals and rocks.Earth Science Frontiers(in Chinese),7(1):229-237.
    Xu Z,Han B F,Zhang L,et al.2008.General characteristics and crystallization process of early tertiary Yinmawanshan gabbro in Liaodong peninsula.Acta Petrologica et Mineralogica(in Chinese),27(5):389-397.
    Xue Y X,Zhu Y F.2009.Zircon SHRIMP chronology and geochemistry of the Haladala gabbro in south-western Tianshan mountains.Acta Petrologica Sinica(in Chinese),25(6):1353-1363.
    Yang X Z,Keppler H,McCammon C,et al.2012.Electrical conductivity of orthopyroxene and plagioclase in the lower crust.Contributions to Mineralogy and Petrology,163(1):33-48,doi:10.1007/s00410-011-0657-9
    Yoshino T,Shimojuku A,Shan S M,et al.2012.Effect of temperature,pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs.Journal of Geophysical Research,117(B08205),doi:10.1029/2011JB008774.
    Yoshino T,Katsura T.2013.Electrical conductivity of mantle minerals:role of water in conductivity anomalies.Annual Review of Earth and Planetary Sciences,41(1):605-628.
    Zhang C L,Liu Y S,Gao S,et al.2011.Chemical compositions of phenocryst-hosted melt inclusions from the Sihetun basalt:implications for the magma evolution.Geochimica(in Chinese),40(2):109-125.
    Zhang Y X,Dai M G,Wan F,et al.2013.Progress of influencing factors of the electrical conductivity of mantle minerals and rocks under high temperature and pressure.Progress in Geophysics(in Chinese),28(3):1336-1345,doi:10.6038/pg20130327.
    白利平,杜建国,刘巍等.2002.高温高压下辉长岩纵波速度和电导率实验研究.中国科学:地球科学,32(11):959-968.
    白武明,谢鸿森,侯渭.2005.地球的层圈结构、力学性质和地幔矿物的高压相变.物理,34(2):115-122.
    陈子琪,蒋少涌,徐耀明等.2015.江西九瑞矿集区郎君山第三纪玄武岩的成因与岩浆演化:来自辉石和长石的矿物学证据.岩石学报,31(3):686-700.
    程远志,汤吉,陈小斌等.2015.南北地震带南段川滇黔接壤区电性结构特征和孕震环境.地球物理学报,58(11):3965-3981,doi:10.6038/cjg20151107.
    代立东,李和平,刘丛强等.2005.高温高压和控制氧逸度条件下透辉石电导率的各向异性实验研究.岩石学报,21(6):1737-1742.
    郭颖星,王多君,李丹阳等.2013.西藏南部蛇绿岩套电导率研究.地球物理学报,56(10):3434-3444,doi:10.6038/cjg20131019.
    郭颖星.2014.岩石电导率的实验及数值模拟研究[博士论文].北京:中国科学院大学.
    黄晓葛,白武明,兰从欣.2005.计算部分熔融岩石电导率方法的综述.地球物理学进展,20(3):635-639.
    姜礼尚,庞之垣.1979.有限元方法及其理论基础.北京:人民教育出版社.
    李石.1977.玄武岩中的辉石.地球与环境,(1):10-18.
    刘平华,刘福来,王舫等.2013.胶北西留古元古代~2.1Ga变辉长岩岩石学与年代学初步研究.岩石学报,29(7):2371-2390.
    龙灵利,王玉往,唐萍芝等.2012.西天山CuNi-VTiFe复合型矿化镁铁-超镁铁杂岩---哈拉达拉岩体成岩成矿背景特殊性讨论.岩石学报,28(7):2015-2028.
    单双明,李和平,代立东等.2009.高温高压下杂质离子对水晶电导率影响的实验研究.矿物学报,29(1):109-112.
    王多君,李和平,刘丛强等.2002.高温高压下辉长岩的电导率实验研究.矿物学报,22(1):81-84.
    吴小平,郑永飞.2003.矿物电导率补偿效应研究及其对元素扩散性质的制约.岩石学报,19(4):729-738.
    向忠金,闫全人,闫臻等.2010.北大巴山志留系滔河口组碱质斑状玄武岩的岩浆源区及形成环境---来自全岩和辉石斑晶地球化学的约束.岩石学报,26(4):1116-1132.
    徐有生.2000.地幔矿物岩石的电导率研究进展.地学前缘,7(1):229-237.
    徐钊,韩宝福,张磊等.2008.辽东半岛早第三纪饮马湾山辉长岩体的基本特征及岩浆结晶过程.岩石矿物学杂志,27(5):389-397.
    薛云兴,朱永峰.2009.西南天山哈拉达拉岩体的锆石SHRIMP年代学及地球化学研究.岩石学报,25(6):1353-1363.
    乐昌硕.1984.岩石学.北京:地质出版社.
    张春来,刘勇胜,高山等.2011.四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示.地球化学,40(2):109-125.
    张云霞,戴明刚,万芬等.2013.高温高压下地幔矿物岩石电导率影响因素研究进展.地球物理学进展,28(3):1336-1345,doi:10.6038/pg20130327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700