用户名: 密码: 验证码:
氧化石墨烯材料对水溶液中放射性元素的吸附去除研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Advances in Adsorption Removal of Radionuclides in Aqueous Solution by Graphene Oxide Materials
  • 作者:何诗诗 ; 周南 ; 赵志荣 ; 王明远 ; 郑茂盛
  • 英文作者:HE Shi-shi;ZHOU Nan;ZHAO Zhi-rong;WANG Ming-yuan;ZHENG Mao-sheng;College of Environmental Science and Engineering,North China Electric Power University;
  • 关键词:氧化石墨烯 ; 放射性元素 ; 吸附 ; 复合材料
  • 英文关键词:graphene oxide;;radionuclides;;adsorption;;composite materials
  • 中文刊名:HXFS
  • 英文刊名:Journal of Nuclear and Radiochemistry
  • 机构:华北电力大学环境科学与工程学院;
  • 出版日期:2019-04-17 10:38
  • 出版单位:核化学与放射化学
  • 年:2019
  • 期:v.41;No.177
  • 语种:中文;
  • 页:HXFS201902003
  • 页数:10
  • CN:02
  • ISSN:11-2045/TL
  • 分类号:21-30
摘要
作为一种高效的新型吸附材料,氧化石墨烯由于具有巨大的比表面积和丰富的含氧官能团等特性,在放射性元素的吸附去除中展现出巨大的应用潜力。本文主要介绍了氧化石墨烯及其复合材料的结构性质与制备方法,并对其在水溶液中吸附去除放射性元素铀、钍、铕的研究进行了综述,通过表面改性或与其它功能性材料复合可显著提高对放射性元素的吸附去除性能,并对吸附机理进行了总结,最后展望了今后的研究方向并提出了建议。
        As an efficient new adsorption material, graphene oxide(GO) has shown great application potential in the adsorption removal of radionuclides in aqueous solution due to the huge specific surface area and abundant oxygen-containing functional group. This review mainly introduces the structure properties and preparation methods of GO and GO-based composites and their adsorption removals of radioactive nuclide uranium, thorium and europium in aqueous solution. Surface modification or combination with other functional materials are effective methods to improve the adsorption capabilities for radionuclide adsorption removal. The adsorption mechanisms are summarized. Finally, the future research directions in the field are prospected and some suggestions are given.
引文
[1] Chapman N,Hooper A.The disposal of radioactive wastes underground[J].P Geologists Assoc,2012,123:46-63.
    [2] Yu S,Wang X,Wang X,et al.Sorption of radio-nuclides from aqueous system onto grapheme oxide-based materials:a review[J].Inorg Chem Front,2015,2:593-612.
    [3] Lee C,Wei X,Kysar J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321:385-388.
    [4] Shen Y,Fang L Q,Chen B L.Environmental applications of three-dimensional graphene-based macrostructures:adsorption,transformation,and detection[J].Environ Sci Technol,2015,49:67-84.
    [5] Novoselov K,Geim A,Morozov S,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666.
    [6] Zhu Y,Murali S,Cai W,et al.Graphene and graphene oxide:synthesis,properties and applications[J].Adv Mater,2010,22:3906-3924.
    [7] Li Y,Zhang P,Du Q,et al.Adsorption of fluo-ride from aqueous solution by graphene[J].J Colloid Interf Sci,2011,363:348-354.
    [8] Ayub K,Wang J,Wang X K,et al.The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media:a review[J].Environ Sci Pollut Res,2017,24:7938-7958.
    [9] Sui N,Wang L N,Wu X H,et al.Polyethylenimine modified magnetic graphene oxide nanocomposites for Cu2+ removal[J].RSC Adv,2015,5:746-752.
    [10] Huang K,Liu G P,Lou Y Y,et al.A graphene oxide membrane with highly selective molecular separation of aqueous organic solution[J].Angew Chem Int Edit,2014,53:7049-7052.
    [11] Zhang Y B,Tan Y W,Stormer L H,et al.Experimental observation of the quantum Hall effect and Berry’s phase in graphene[J].Nature,2005,438:201-204.
    [12] 王晓宁.氧化石墨烯及其复合材料的制备与钍、铀吸附性能研究[D].上海:中国科学院研究生院(上海应用物理研究所),2016.
    [13] 王祥学,李洁,于淑君,等.放射性核素在天然黏土和人工纳米材料上的吸附机理研究[J].核化学与放射化学,2015,37(5):329-340.
    [14] Dubey S P,Dwivedi A D,Kim I C,et al.Synthesis of graphene-carbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications[J].Chem Eng J,2014,244:160-167.
    [15] Brodie B C.On the atomic weight of graphite[J].Philos Trans R Soc,1859,14:249-259.
    [16] Staudenmaier L.Verfahren zur darstellung der graphitsaure[J].Eur J Inorg Chem,1898,31:1481-1487.
    [17] Hummers W S,Offeman R E.Preparation of graphitic oxide[J].Am Chem Soc,1958,80:1339-1339.
    [18] Marcano D C,Kosynkin D V,Berlin J M,et al.Improved synthesis of graphene oxide[J].ACS Nano,2010,4:4806-4814.
    [19] Deng X,Lü L,Li H,et al.The adsorption properties of Pb(Ⅱ) and Cd(Ⅱ) on functionalized graphene prepared by electrolysis method[J].J Hazard Mater,2010,183:923-930.
    [20] 梁宇,顾鹏程,王祥科,等.碳基纳米材料对水环境中放射性元素铀的吸附[J].化学进展,2017,29(9):1062-1071.
    [21] Wang F,Li H,Liu Q,et al.A graphene oxide/amidoxime hydrogel for enhanced uranium capture[J].Sci Rep,2016,6:19367.
    [22] Chen L,Zhao D L,Chen S H,et al.Colloid Interface[J].Science,2016,472:99.
    [23] Song W C,Wang X X,Wang Q,et al.Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J].Phys Chem,2015,17:398-406.
    [24] 杨姗也,王祥学,王祥科,等.四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J].化学进展,2018,30(2/3):225-242.
    [25] 盛国栋,杨世通,郭志强,等.纳米材料和纳米技术在核废料处理中的应用研究进展[J].核化学与放射化学,2012,34(6):321-330.
    [26] Romanchuk A Y,Slesarev A S,Kalmykov S N,et al.Graphene oxide for effective radionuclide removal[J].Phys Chem,2013,15:2321-2327.
    [27] Zhao G X,Wen T,Yang X,et al.Preconcentration of U(Ⅵ) ions on few-layered graphene oxide nanosheets from aqueous solutions[J].Dalton Trans,2012,41:6182-6188.
    [28] Li Z,Chen F,Yuan L,et al.Uranium(Ⅵ) adsorption on graphene oxide nanosheets from aqueous solutions[J].Chem Eng J,2012,210:539-546.
    [29] 李琰.氧化石墨烯的合成、表征及其对U(Ⅵ)、Th(Ⅳ)、Eu(Ⅲ)的吸附研究[D].兰州:兰州大学,2012.
    [30] Tan L C,Wang Y L,Liu Q,et al.Enhanced adsorption of uranium(Ⅵ) using a three-dimensional layered double hydroxide/graphene hybrid material[J].Chem Eng J,2015,259:752-760.
    [31] Chen T,Shi P H,Zhang J,et al.Natural polymer konjac glucomannan mediated assembly of graphene oxide as versatile sponges for water pollution control[J].Carbohyd Polym,2018,202:425-433.
    [32] Yu S,Wang J,Wang X,et al.One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(Ⅵ) from wastewater[J].Sci China Chem,2017,60:415-422.
    [33] Rao C,Sood A,Subrahmanyam K,et al.Graphene:the new two dimensional nanomaterial[J].Angew Chem Int Ed,2009,48:7752-7777.
    [34] Bai Z Q,Li Z J,Wang C Z,et al.Interactions between Th(Ⅳ) and graphene oxide:experimental and density functional theoretical investigations[J].RSC Adv,2014,4:3340-3347.
    [35] Li Y,Wang L C,Liu C L.Synthesis and Th(Ⅳ) sorption characteristics of functionalised graphene oxide[J].J Radioanal Nucl Chem,2014,302:489-496.
    [36] Li F,Yang Z,Weng H,et al.High efficient separation of U(Ⅵ) and Th(Ⅳ) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide[J].Chem Eng J,2018,332:340-350.
    [37] 王云,吴鹏,胡学文,等.氧化石墨烯纳米带对Th(Ⅳ)的吸附性能研究[J].东华理工大学学报,2018(1):71-77.
    [38] Sun Y,Wang X,Wang X,et al.Mechanistic insights on the decontamination of Th(Ⅳ) on graphene oxide-based composites by EXAFS and modeling techniques[J].Environ Sci Nano,2017,4:222-232.
    [39] Fan Q H,Tan X L,Wang X K,et al.Sorption of Eu(Ⅲ) on attapulgite studied by Batch,XPS,and EXAFS techniques[J].Environ Sci Technol,2009,43:5776-5782.
    [40] Ding C C,Cheng W C,Sun Y B,et al.Determination of chemical affinity of graphene oxide nanosheets with radionuclides investigated by macroscopic,spectroscopic and modeling techniques[J].Dalton Trans,2014,43:3888-3896.
    [41] 黄志伟.三维石墨烯基宏观体对放射性元素分离和富集的研究[D].南昌:东华理工大学,2017.
    [42] Sun Y B,Shao D D,Wang X K,et al.Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J].Environ Sci Technol,2013,47:9904-9910.
    [43] Wang Y H,Chi B,Xiao C L,et al.Graphene oxide@Mg3Si4O9(OH)(10):a hierarchical layered silicate nanocomposite with superior adsorption capacity for enriching Eu(Ⅲ)[J].Chem Eng J,2018,338:628-635.
    [44] Li Y,Sheng G D,Sheng J,et al.Magnetite decorated graphene oxide for the highly efficient immobilization of Eu(Ⅲ) from aqueous solution[J].Molecular Liquids,2014,199:474-480.
    [45] Baybas D,Ulosoy U.Polyacrylamide-hydroxyapatite composite:preparation,characterization and adsorptive features for uranium and thorium[J].J Solid State Chem,2012,194:1-8.
    [46] Abbasizadeh S,Keshtkar A R,Mousavian M A.Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(Ⅵ) and thorium(Ⅳ) removal from aqueous solution[J].Chem Eng J,2013,220:161-171.
    [47] Tan L,Zhang X,Liu Q,et al.Synthesis of Fe3O4@TiO2 core-shell magnetic composites for highly efficient sorption of uranium(Ⅵ)[J].Colloids Surf A,2015,469:279-286.
    [48] Wang Y,Gu Z X,Yang J J,et al.Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(Ⅵ)[J].Appl Surf Sci,2014,320:10-20.
    [49] Rezaei A,Khani H,Masteri-Farahani M.A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry[J].Anal Methods,2012,4:4107-4114.
    [50] 王苏菲,于淑君,吴忆涵,等.聚苯胺@碳纳米纤维复合材料对放射性核素铀的高效去除[J].中国科学:化学,2018,48,doi:10.1360/N032018-00125.
    [51] Hazer O,Kartal E.Use of amidoximated hydrogel for removal and recovery of U(Ⅵ) ion from water samples[J].Talanta,2010,82:1974-1979.
    [52] Ding C C,Cheng W C,Wang X K,et al.Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides[J].J Hazard Mater,2015,295:127-137.
    [53] Yang S T,Zong P F,Wang X K,et al.Rapid and highly efficient preconcentration of Eu(Ⅲ) by core-shell structured Fe3O4@humic acid magnetic nanoparticles[J].ACS Appl Mater Interfaces,2012,4:6891-6900.
    [54] Cai Y W,Yuan F,Wang X K,et al.Synthesis of core-shell structured Fe3O4@carboxymethyl cellulose magnetic composite for highly efficient removal of Eu(Ⅲ)[J].Cellulose,2017,24(1):175-190.
    [55] Andersson K I,Eriksson M,Norgren M.Removal of lignin from wastewater generated by mechanical pulping using activated charcoal and fly ash:adsorption isotherms and thermodynamics[J].Ind Eng Chem Res,2016,50:7722-7732.
    [56] Foo K Y,Hameed B H.Insights into the modeling of adsorption isotherm systems[J].Chem Eng J,2010,156:2-10.
    [57] Wan S,He F,Wu J,et al.Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites[J].J Hazard Mater,2016,314:32-40.
    [58] Cheng W C,Wang M L,Yang Z G,et al.The efficient enrichment of U(Ⅵ) by graphene oxide-supported chitosan[J].RSC Adv,2014,4:61919-61926.
    [59] Hua B,Guo X,Zheng C,et al.Plasma-enhanced amidoxime/magnetic graphene oxide for efficient enrichment of U(Ⅵ) investigated by EXAFS and modeling techniques[J].Chem Eng J,2019,357:66-74.
    [60] Chen H,Shao D D,Wang X K,et al.The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide[J].Chem Eng J,2014,254:623-634.
    [61] Zhao G X,Wu W L,Wang X K,et al.Sorption of heavy metal ions from aqueous solutions:a review[J].The Open Colloid Sci J,2011,4:19-31.
    [62] Ho Y S.Review of second-order models for adsorption systems[J].J Hazard Mater,2006,136:681-689.
    [63] Hu R,Shao D D,Wang X K.Graphene oxide/polypyrrole composites for highly selective enrichment of U(Ⅵ) from aqueous solutions[J].Polym Chem,2014,5:6207-6215.
    [64] 庞宏伟,王祥学,姚文,等.金属氧化物材料对放射性核素的去除及机理研究[J].中国科学:化学,2018,48:58-73.
    [65] 王祥学,庞宏伟,吴忆涵,等.层状双金属氧化物材料对放射性核素的去除研究[J].中国科学:化学,2018,48,doi:10.1360/N032018-00133.
    [66] Bai Z Q,Li Z J,Shi W Q,et al.Interactions between Th(Ⅳ) and graphene oxide:experimental and density functional theoretical investigations[J].RSC Adv,2014,4:3340-3347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700