用户名: 密码: 验证码:
蒸发波导对GNSS海面反射信号有效散射区域的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of evaporation duct on the effective scattering region of GNSS reflected signals on the sea surface
  • 作者:刘黎军 ; 夏俊明 ; 白伟华 ; 孙越强 ; 杜起飞 ; 骆黎明
  • 英文作者:LIU LiJun;XIA JunMing;BAI WeiHua;SUN YueQiang;DU QiFei;LUO LiMing;The university of Chinese Academy of Sciences;National Space Science Center,Chinese Academy of Sciences;Beijing Key Laboratory of Space Environment Exploration;
  • 关键词:蒸发波导 ; GNSS海面反射信号 ; 射线追踪 ; 有效散射区域
  • 英文关键词:Evaporation duct;;GNSS sea surface reflected signal;;Ray tracing;;Effective scattering region
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国科学院大学;中国科学院国家空间科学中心;天基空间环境探测北京市重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:地球物理学报
  • 年:2019
  • 期:v.62
  • 基金:国家重点研发计划重点专项项目(2017YFB0502800,2017YFB0502802);; 国家自然科学基金青年科学基金项目(41606206,41405039,41405040,41505030)资助
  • 语种:中文;
  • 页:DQWX201902005
  • 页数:9
  • CN:02
  • ISSN:11-2074/P
  • 分类号:59-67
摘要
蒸发波导在海洋低空的发生概率高达90%,对舰船雷达、通信等电磁系统具有重要影响.为了分析利用GNSS卫星海面反射信号的时延-相关功率波形反演蒸发波导的可行性,本文提出了GNSS卫星海面反射信号的有效散射区域的概念,并将有效散射区域内的GNSS反射信号区分为GNSS标准反射信号和GNSS波导反射信号;然后,利用射线追踪方法,仿真分析了GNSS卫星海面反射信号的有效散射区域大小对蒸发波导的关键参数——波导高度的敏感性,并分析了在时延-相关功率波形上利用反射信号的传播时延将二者分离开的可行性.结果表明,GNSS卫星海面反射信号的有效散射区域对蒸发波导高度非常敏感,对于2~25m高的GNSS反射信号接收天线,当蒸发波导的高度由0m增加至20m时,GNSS反射信号有效散射区域半径的均值可由约14km迅速扩展至约160km;采用高度角足够大的GNSS卫星可以将有效散射区内的GNSS标准反射信号与GNSS波导反射信号在时延-相关功率波形上分离开.
        The occurrence probability of evaporation duct,which has significant influence on the ship-borne radar,communication and other electromagnetic systems,is as great as 90% at low altitude marine atmosphere.In order to analyze the feasibility of retrieving the evaporative duct using the delay-correlation power mapping of the GNSS sea surface reflected signals,the concept of the effective scattering region of the GNSS sea surface reflected signals was proposed,and these signals in the effective scattering region were divided into GNSS standard reflected signals and GNSS duct reflected signals.Then,the sensitivity of the effective scattering region of the GNSS sea surface reflected signals to the key parameter of the duct,the evaporation duct height,was analyzed utilizing the ray tracing method.And the feasibility of separating GNSS duct reflected signals from GNSS standard reflected signals was analyzed as well.The results showthat the effective scattering region of the GNSS reflected signals is very sensitive to the evaporation duct height.When the evaporation duct height increases from 0 m to 20 m,the mean effective scattering region radius could be rapidly extended from about 14 km to about 160 km with GNSS receiver antenna height varying from 2 m to 25 m.The GNSS standard reflection signals in the effective scattering region could be separated from the GNSS duct signals when the GNSS satellite's elevation angel is large enough.
引文
Bai W H,Xia J M,Zhao D Y,et al.2016.GREEPS:an GNSS-Rend-to-end performance simulator.∥IEEE International Geoscienceand Remote Sensing Symposium(IGARSS).Beijing,China:IEEE,4831-4834.
    Balvedi G C,Walter F.2007.Analysis of GPS signal propagation in tropospheric ducts using numerical methods.∥11th URSICommission F Open Symposium on Radio Wave Propagation and Remote Sensing Proceedings.Rio de Janeiro,RJ,Brazil.
    Balvedi G C,Walter F.2008.GPS Signal Propagation in Tropospheric Ducts.Finland:URSI Convention on Radio Science.
    Bi Y M,Mao J T,Liu X Y,et al.2006.Remote sensing of the amount of water vapor along the slant path using the groundbase GPS.Chinese J.Geophys.(in Chinese),49(2):335-342.
    Dai F S.2002.Atmospheric Duct and It Military Application(in Chinese).Beijing:Chinese People′s Liberation Army Publishing House.
    Foti G,Gommenginger C,Jales P,et al.2015.Spaceborne GNSSreflectometry for ocean winds:First results from the UKTechDemoSat-1mission.Geophys.Res.Lett.,42(13):5435-5441.
    Freehafer J E.1988.Tropospheric refraction.∥Kerr D E ed.Propagation of Short Radio Wave.Los Altos Hills:Peninsula Publishing.
    Kang S F,Zhang Y S,Wang H G.2014.Atmospheric Duct in Troposphere Environment(in Chinese).Beijing:Science Press.
    Karimian A,Yardim C,Gerstoft P,et al.2011.Refractivity estimation from sea clutter:An invited review.Radio Science,46(6):RS6013,doi:10.1029/2011RS004818.
    Krolik J L,Tabrikian J.1997.Tropospheric refractivity estimation using radar clutter from the sea surface.∥Proceedings of the1997Battle space Atmospherics Conference.San Diego,635-642.
    Li G C,Gao L X,Liang Y.2010.Simulation modelling the GPSsignal propagation in the tropospheric ducts.∥Proceedings of the 9th International Symposium on Antennas,Propagation and EM Theory.Guangzhou,China:IEEE,592-595.
    Lowry A R,Rocken C,Sokolovskiy S V,et al.2002.Vertical profiling of atmospheric refractivity from ground-based GPS.Radio Science,37(3):13-1-13-19.
    Rogers L T,Hattan C P,Stapleton J K.2000.Estimating evaporation duct heights from radar sea echo.Radio Science,35(4):955-966.
    Wang B,Wu Z S,Zhao Z W,et al.2011.A passive technique to monitor evaporation duct height using coastal GNSS-R.IEEEGeoscience and Remote Sensing Letters,8(4):587-591.
    Wang H G,Wu Z S,Kang S F,et al.2013a.Monitoring the marine atmospheric refractivity profiles by ground-based GPSoccultation.IEEEGeoscienceandRemoteSensingLetters,10(4):962-965.
    Wang H G,Wu Z S,Lin L K,et al.2013b.Retrieving evaporation duct heights from power of ground-based GPS occultation signal.Progress in Electromagnetics Research M,30:183-194.
    Wu Y Y,Hong Z J,Guo P,et al.2010.Simulation of atmospheric refractive profile retrieving from low-elevation ground-based GPS observation.Chinese J.Geophys.(in Chinese),53(5):1085-1090,doi:10.3969/j.issn.0001-5733.2010.05.008.
    Xia J M,Bai W H,Zhao D Y,et al.2016.First shipborne GNSS-Rcampaign for receiving low elevation angle sea surface reflected signals.∥IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Beijing,China:IEEE,5613-5616.
    Yan H J,Fu Y,Hong Z J.2006.Introduction to Modern Atmospheric Refraction(in Chinese).Shanghai:Shanghai Science and Technology Education Press.
    Yardim C.2007.Statistical estimation and tracking of refractivity from radar clutter[Ph.D.thesis].California:University of California.
    Yardim C,Gerstoft P,Hodgkiss W S.2009.Sensitivity analysis and performance estimation of refractivity from clutter techniques.Radio Science,44:RS1008,doi:10.1029/2008RS003897.
    Zavorotny Z U,Gleason S,Cardellach E,et al.2014.Tutorial on remote sensing using GNSS Bistatic radar of opportunity.IEEEGeoscience and Remote Sensing Magazine,2(4):8-45.
    Zavorotny Z U,Voronovich A G,Katzberg S J,et al.2000.Extraction of sea state and wind speed from reflected GPSsignals:modeling and aircraft measurements.∥IEEE 2000 International Geoscience and Remote Sensing Symposium.Taking the Pulse of the Planet:The Role of Remote Sensing in Managing the Environment.Honolulu,USA:IEEE,1507-1509.
    Zhang J P,Wu Z S,Wang B,et al.2012.Modeling low elevation GPS signal propagation in maritime atmospheric ducts.Journal of Atmospheric and Solar-Terrestrial Physics,80:12-20.
    Zhang Y.2007.Electromagnetic Waves Propagation in Space(in Chinese).Xi′an:Xi′an University of Electronic Science and Technology Press.
    Zhang Y G,Jiao L,Zhang X,et al.2014.Marine Atmospheric Duct′s Effect and Application for Sound,Light and Electromagnetic Waves(in Chinese).Beijing:Publishing House of Electronic Industry.
    Zhou P,Zhang H Y,He Y,et al.2014.Application of atmospheric duct in maritime communications.Telecommunication Engineering(in Chinese),54(8):1134-1139.
    毕研盟,毛节泰,刘晓阳等.2006.应用地基GPS遥感倾斜路径方向大气水汽总量.地球物理学报,49(2):335-342.
    戴福山.2002.大气波导及其军事应用.北京:解放军出版社.
    康士峰,张玉生,王红光.2014.对流层大气波导.北京:科学出版社.
    伍亦亦,洪振杰,郭鹏等.2010.地基GPS低高度角观测反演大气折射率廓线的模拟仿真.地球物理学报,53(5):1085-1090,doi:10.3969/j.issn.0001-5733.2010.05.008.
    严豪健,符养,洪振杰.2006.现代大气折射引论.上海:上海科技教育出版社.
    张瑜.2007.电磁波空间传播.西安:西安电子科技大学出版社.
    张永刚,焦林,张旭等.2014.海洋声光电波导效应及应用.北京:电子工业出版社.
    周朋,张海勇,贺寅等.2014.大气波导在海上通信中的应用.电讯技术,54(8):1134-1139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700