用户名: 密码: 验证码:
2016年意大利阿马特里切Mw 6.2地震震源机制InSAR反演
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Source Parameters for the 2016 Mw 6.2 Italy Amatrice Earthquake Revealed by InSAR Observations
  • 作者:张庆云 ; 李永生 ; 罗毅 ; 张景发 ; 杨建钦
  • 英文作者:ZHANG Qingyun;LI Yongsheng;LUO Yi;ZHANG Jingfa;YANG Jianqin;Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics,China Earthquake Administration;Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration;CNOOC Institute Research;
  • 关键词:意大利阿马特里切地震 ; 亚平宁冲断带 ; InSAR ; 震源参数反演
  • 英文关键词:Italy Amatrice earthquake;;Apennines thrust belt;;InSAR;;inversion of source parameters
  • 中文刊名:WHCH
  • 英文刊名:Geomatics and Information Science of Wuhan University
  • 机构:中国地震局工程力学研究所地震工程与工程震动重点实验室;中国地震局地壳应力研究所地壳动力学重点实验室;中海油研究总院;
  • 出版日期:2019-01-05
  • 出版单位:武汉大学学报(信息科学版)
  • 年:2019
  • 期:v.44
  • 基金:中央级公益性科研院所基本科研业务专项(ZDJ2017-29,ZDJ2015-15);; 民用航天项目(D010102);; 中国地震局项目(Y201711)~~
  • 语种:中文;
  • 页:WHCH201901016
  • 页数:7
  • CN:01
  • ISSN:42-1676/TN
  • 分类号:121-127
摘要
2016年8月24日,意大利中部阿马特里切(Amatrice)地区发生Mw 6.2地震。采用ALOS-2条带模式和SENTINEL-1A宽幅模式的合成孔径雷达(synthetic aperture radar, SAR)数据分别进行SAR差分干涉测量处理,获取了该地震的同震形变场。结果显示,本次地震造成意大利中部地区发生明显的地壳形变,在雷达视线向最大沉降量达19.6 cm。基于合成孔径雷达干涉测量(interferometry synthetic aperture radar,InSAR)和GPS同震形变场数据对此次地震的发震断层进行联合反演,通过改进倾角和平滑系数获取方法,得到了最优滑动分布模型。通过使用单断层模型和双断层模型进行反演可知,双断层模型反演结果优于单断层反演结果,两种模型下反演模型相关系数分别为0.85和0.89,发震断层走向分别为160°和158°,倾角分别为44°和46°,倾滑分布主要位于地下5~7 km,平均倾滑角为-80°,最大倾滑量0.9 m位于地壳深度5 km处,该发震断层是亚平宁冲断带的一部分,为NW-SE向延伸的正断层,断层长约20 km。综合使用地震同震形变场和GPS数据对震源机制进行反演、模拟和分析,获取了高精度的震源参数,可以为分析地震危险性和断层破裂参数等提供数据支持。
        On August 24,2016, an Mw 6.2 earthquake occurred in Amatrice, central Italy. In this paper, we use the ALOS-2 stripe-mode data and SENTINEL-1 A wide swath data to obtain the coseismic deformation field by differential interferometry processing. InSAR results show that the earthquake caused significant deformation in central Italy. The largest subsidence reached 19.6 cm in the satellite line of sight(LOS) direction. Based on the InSAR and GPS coseismic deformation field data, we use a two-step inversion strategy to carried out the joint inversion of the seismogenic fault and to improve estimation method of the optimal dip angle and smoothness coefficient, and obtain the optimal fault slip distribution model. By using the single fault model and double fault model, the inversion show that the results of the double fault model are better than that of the single fault model. The data-model correlation coefficients of the inversion models under the two models are 0.85 and 0.89, respectively. The strike directions of the seismogenic fault are 160° and 158°, and the dip angles are 44° and 46°, respectively. The slip is mainly distributed at 5-7 km depth. The maximum amount of slip is up to 0.9 m at the depth of 5 km. The seismogenic fault is a 20 km long normal fault striking in the NW-SE direction which is a part of the Apennines fault zone. It shows that using InSAR and GPS data to carry out focal mechanism inversion and simulation analysis can accurately derive source parameters and provide data support for the analysis of seismic risk and fault nature.
引文
[1] USGS. Poster of the Central Italy Earthquake of 24 August 2016-Magnitude 6.2[OL]. http:// earthquake. Usgs.gov /earthquakes /eqarchives/ poster/ 2016/ 20160824.php, 2016
    [2] Tan Kai, Wang Qi, Shen Chongyang. Using Geodetic Data to Inverse Co-seismic Dislocation of 2001 Kunlun Earthquake[J]. Journal of Geodesy and Geodynamics, 2004, 24(3):47-50 (谭凯, 王琪, 申重阳. 用大地测量数据反演2001年昆仑山地震[J]. 大地测量与地球动力学, 2004, 24(3):47-50)
    [3] Tu Hongwei, Wang Rongjiang, Diao Faqi, et al. Slip Model of the 2001 Kunlun Mountain Ms 8.1 Earthquake by SDM: Joint Inversion from GPS and InSAR Data[J]. Chinese Journal of Geophysics, 2016, 56(6):2 103-2 112 (屠泓为, 汪荣江, 刁法启,等. 运用SDM方法研究2001年昆仑山口西Ms 8.1地震破裂分布:GPS和InSAR联合反演的结果[J]. 地球物理学报, 2016, 56(6):2 103-2 112)
    [4] Li Zhenhong, Elliott J R, Feng Wanpeng, et al. The 2010 Mw 6.8 Yushu (Qinghai, China) Earthquake: Constraints Provided by InSAR and Body Wave Seismology[J]. Journal of Geophysical Research: Solid Earth, 2011, 116:B10302
    [5] Li Yongsheng, Shen Wenhao, Wen Yangmao, et al. Source Parameters for the 2015 Nepal Earthquake Revealed by InSAR Observations and Strong Ground Motion Simulation[J]. Chinese Journal of Geophysics, 2016, 59(4): 1 359-1 370 (李永生, 申文豪, 温扬茂,等. 2015年尼泊尔Mw 7.8地震震源机制InSAR反演及强地面运动模拟[J]. 地球物理学报, 2016,59(4):1 359-1 370)
    [6] D’Agostino N, Mantenuto S, D’Anastasio E, et al. Contemporary Crustal Extension in the Umbria-Marche Apennines from Regional CGPS Networks and Comparison Between Geodetic and Seismic Deforma- tion[J]. Tectonophysics, 2009, 476(1-2):3-12
    [7] Huang Monghan, Fielding E J, Liang Cunren, et al. Coseismic Deformation and Triggered Landslides of the 2016 Mw 6.2 Amatrice Earthquake in Italy[J]. Geophysical Research Letters, 2017,44(3): 1 266-1 274
    [8] Pucci S, de Martini P M, Civico R, et al. Coseismic Ruptures of the 24 August 2016, Mw 6.0 Amatrice Earthquake (Central Italy)[J]. Geophysical Research Letters, 2017, 44(5):2 138-2 147
    [9] Ekstrom G, Andrea M, Enzo B, et al. Moment Tensor Analysis of the Central Italy Earthquake Sequence of September-October 1997[J]. Geophysical Research Letters, 1998, 25(11):1 971-1 974
    [10] Amato A,Azzara R, Chiarabba C, et al. The 1997 Umbria-Marche, Italy, Earthquake Sequence: A First Look at the Main Shocks and Aftershocks[J]. Geophysical Research Letters, 1998, 25(15):2 861-2 864
    [11] Lavecchia G, Castaldo R, de Nardis R, et al. Ground Deformation and Source Geometry of the August 24, 2016 Amatrice Earthquake (Central Italy) Investigated Through Analytical and Numerical Modeling of DInSAR Measurements and Structural-Geological Data[J]. Geophysical Research Letters, 2016, 43:12 389-12 398
    [12] Michetti A M. Surface Faulting During the August 24, 2016, Central Italy Earthquake[J]. Annals of Geophysics, 2016, 59:1-8
    [13] Yano T E, Shao Guangfu, Liu Qiming, et al. Finite Fault Kinematic Rupture Model of the 2009 Mw 6.3 L’Aquila Earthquake from Inversion of Strong Motion, GPS and InSAR Data[C]. American Geophysi- cal Union Fall Meeting, San Francisco, California, USA, 2009
    [14] Temblor: Italy Earthquake Leaves Seismic Gaps that were Last Filled by Three Large Earthquakes in 1703 [OL]. http://temblor.net/earthquake-insights/gaps-persist-beyond-ends-m6-2-rieti-italy-ear- thquake-progressive-sequence-large-shocks-struck-17 03-1216/, 2016
    [15] Cinti F R, Cucci L, Marra F, et al. The 1997 Umbria-Marche (Italy) Earthquake Sequence: Relationship Between Ground Deformation and Seismogenic Structure[J]. Geophysical Research Letters, 1999, 26(7):895-898
    [16] Wei Shengji, Barbot S, Graves R, et al. The 2014 Mw 6.1 South Napa Earthquake: A Unilateral Rupture with Shallow Asperity and Rapid Afterslip[J]. Seismological Research Letters, 2015, 86(2A):344-354
    [17] Li Yongsheng, Feng Wanpeng, Zhang Jingfa, et al. Coseismic Slip of the 2014 Mw 6.1 Napa, California Earthquake Revealed by SENTINEL-1A InSAR[J]. Chinese Journal of Geophysics, 2015, 58(7):2 339-2 349 (李永生,冯万鹏,张景发,等. 2014年美国加州纳帕Mw 6.1地震断层参数的SENTINEL-1A InSAR反演[J]. 地球物理学报,2015, 58(7):2 339-2 349)
    [18] RING-Rete Integrata Nazionale GPS [OL]. http://ring.gm.ingv.it/?page_id=702, 2017
    [19] Cheloni D, Serpelloni E, Devoti R, et al. GPS Observations of Coseismic Deformation Following the 2016, August 24, Mw 6 Amatrice Earthquake (Central Italy): Data, Analysis and Preliminary Fault Model[J]. Annals of Geophysics, 2016, 59(5):1-8
    [20] Cheloni D. Geodetic Model of the 2016 Central Italy Earthquake Sequence Inferred from InSAR and GPS Measurements[C]. European Geosciences Union General Assembly 2017,Vienna, Austria, 2017
    [21] Lohman R B, Simons M. Some Thoughts on the Use of InSAR Data to Constrain Models of Surface Deformation: Noise Structure and Data Downsampling[J]. Geochemistry Geophysics Geosystems, 2005, 6(1):359-361
    [22] Feng Wanpeng, Li Zhenhong, Elliott J R, et al. The 2011 Mw 6.8 Burma Earthquake: Fault Constraints Provided by Multiple SAR Techniques[J]. Geophysical Journal International, 2013, 195(1):650-660
    [23] Feng Wanpeng, Li Zhenhong. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data[J]. Progress in Geophysics, 2010, 25(4): 1 189-1 196 (冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4):1 189-1 196)
    [24] Li Yongsheng, Jiang Wenliang, Zhang Jingfa, et al. Space Geodetic Observations and Modeling of 2016 Mw 5.9 Menyuan Earthquake: Implications on Seismogenic Tectonic Motion[J]. Remote Sensing, 2016, 8(6):519-530
    [25] Okada Y. Surface Deformation due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 92(2):1 018-1 040
    [26] Harris R A, Segall P. Detection of a Locked Zone at Depth on the Parkfield, California, Segment of the San Andreas Fault[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B8):7 945-7 962
    [27] Xu Guangyu, Xu Caijun, Wen Yangmao, et al. Source Parameters of the 2016—2017 Central Italy Earthquake Sequence from the Sentinel-1, ALOS-2 and GPS Data[J]. Remote Sensing, 2017, 9(11):1 182-1 203
    [28] Global Centroid Moment Tensor[OL]. http://www.globalcmt.org/CMTsearch.html, 2017
    [29] Institute of Geophysics and Volcanology[OL]. http://info.terremoti.ingv.it/, 2017
    [30] Tinti E, Scognamiglio L, Michelini A, et al. Slip Heterogeneity and Directivity of the ML 6.0, 2016, Amatrice Earthquake Estimated with Rapid Finite-Fault Inversion[J]. Geophysical Research Letters, 2016, 43:10 745-10 752

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700