用户名: 密码: 验证码:
基于核密度估计的碎屑颗粒年龄分析及应用:松辽盆地构造事件定年
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Decomposition the detrital grain ages by Kernel Density Estimation and its applications:Determining the major tectonic events in the Songliao Basin,NE China
  • 作者:宋鹰 ; 张俊霞 ; Andrei ; Stepashko ; 袁万明 ; 丛旭日
  • 英文作者:SONG Ying;ZHANG Junxia;Andrei STEPASHKO;YUAN Wanming;CONG Xuri;School of Geosciences,China University of Petroleum (East China);Faculty of Economy and Management,China University of Geosciences (Wuhan);Institute of Tectonics and Geophysics,Russian Academy of Sciences;School of Scientific Research,China University of Geosciences (Beijing);Mathematics Department,Qingdao University;
  • 关键词:碎屑颗粒 ; 热年代学 ; 核密度估计 ; 松辽盆地 ; 构造热演化史
  • 英文关键词:detrital grains;;thermochronology;;Kernel Density Estimation;;Songliao Basin;;tectonic-thermal evolution
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国石油大学(华东)地球科学与技术学院;中国地质大学(武汉)经管学院;俄罗斯科学院大地构造与地球物理研究所;中国地质大学(北京)科学研究院;青岛大学数学系;
  • 出版日期:2015-10-22 16:57
  • 出版单位:地学前缘
  • 年:2016
  • 期:v.23;No.120
  • 基金:国家自然科学基金项目(41402171);; 国家科技重大专项(2011ZX05009-001);; 山东省自然科学基金项目(ZR2013DQ013);; 中央高校基本科研业务费专项(16CX02038A)
  • 语种:中文;
  • 页:DXQY201604026
  • 页数:12
  • CN:04
  • ISSN:11-3370/P
  • 分类号:269-280
摘要
碎屑矿物热年代学是了解板块碰撞、造山带抬升剥露以及盆地沉积等地质事件的重要途径之一。同一沉积区内碎屑颗粒通常是多来源的,含有不同的年龄组分,如何获得真实的年龄组分分布样式,进而准确地提取出地质年龄信息是碎屑颗粒年龄分析的关键。由于受到数学原理、组距选择和样品分析测试误差等因素的影响,常用的地质年龄频率分布图和概率密度曲线难以得到真实的年龄分布样式。本文引入一种新的同位素年龄数据统计方法——核密度估计法。该方法以同位素年龄数据为基础,根据数据密度和测试误差自适应变换带宽函数,减少了测试误差和样本数量的干扰,有效地提高了年龄分解精度。该方法尤其适用于同位素年龄样本数量少的研究新区以及测试误差大的碎屑颗粒年代学数据分析。本文应用核密度估计法,对大兴安岭地区显生宙花岗岩锆石U-Pb年龄数据库和松辽盆地碎屑磷灰石裂变径迹年龄数据进行了分析,所得到的年龄分布样式不但与区域地质背景、盆地构造-沉积记录等地质事实相吻合,还进一步准确约束了区域构造事件的年代界限。因此核密度估计法是一种能合理有效地进行地质年龄分布样式分析的先进统计方法。
        The thermochronology of detrital grains has quickly become a very popular technique for understanding some complicated geological processes,e.g.plate collision,orogeny and sedimentary provenance studies.Detrital single grains from well-dated sedimentary formations contain different age components,serving as mineral tracers in sedimentary systems and record the sediment-forming processes.Therefore how to decompose and visualize the ages faithfully and extract possible geological information are keys to the understanding thermochronology result of detrital grains.Binned Frequency Estimation and Probability Density Estimation are two extensively using approaches.Unfortunately,both of them lack a firm theoretical basis and can produce inaccurate results when data quantity or quality is low.This paper introduces a statistical technique for analyzing isotope age,called Kernel Density Estimation(KDE),which involves the age data,but explicitly takes into account the analytical uncertainties by inherent adaptive bandwidth functions.Such adaptive functions vary the bandwidth according to the local density,avoiding the uncertainties from analytical errors and age abundance.Finally,we used the KDE to study two independent thermochronology date sets in northeast China:the zircon U-Pb ages of Phanerozoic granitoids in Great Xing'an Range and the single grain fission track ages of detrital apatite in the Songliao Basin.The estimated age pattern coincides with the regional tectonics and tectono-sedimentary records in the study area.It also gives more accurate chronological constraints to some major regional tectonic events.Thus,the KDE proves to be a valid statistical approach for geologic age decomposition.
引文
[1]Bernet M,Garver J I.Fission-track analysis of detrital zircon[J].Reviews in Mineralogy and Geochemistry,2005,58(1):205-237.
    [2]Reiners P W,Ehlers T A,Zeitler P K.Past,present,and future of thermochronology[J].Reviews in Mineralogy and Geochemistry,2005,58(1):1-18.
    [3]Eynatten H,Dunkl I.Assessing the sediment factory:The role of single grain analysis[J].Earth-Science Reviews,2012,115(1/2):97-120.
    [4]Gehrels G.Detrital zircon U-Pb geochronology:Current methods and new opportunities[M]∥Cathy B,Antonio A.Tectonics of Sedimentary Basins:Recent Advances.Oxford:John Wiley&Sons,2011:47-62.
    [5]裴先治,李佐臣,李瑞保,等.祁连造山带东段早古生代葫芦河群变质碎屑岩中碎屑锆石LA-ICP-MS U-Pb年龄:源区特征和沉积时代的限定[J].地学前缘,2012,19(5):205-224.
    [6]陈熠,方小敏,宋春晖,等.准噶尔盆地南缘新生代沉积物碎屑锆石记录的天山隆升剥蚀过程[J].地学前缘,2012,19(5):225-233.
    [7]王非,师文贝,朱日祥.40 Ar/39 Ar年代学中几个重要问题的讨论[J].岩石学报,2014,30(2):326-340.
    [8]曹凯,王国灿,van der Peter B,等.热年代学年龄温度法和年龄高程法的应用条件:对采样策略及年龄表达的启示[J].地学前缘,2011,18(6):347-357.
    [9]王国灿.沉积物源区剥露历史分析的一种新途径:碎屑锆石和磷灰石裂变径迹热年代学[J].地质科技情报,2002,21(4):35-40.
    [10]沈传波,梅廉夫,凡元芳,等.磷灰石裂变径迹热年代学研究的进展与展望[J].地质科技情报,2005,24(2):57-63.
    [11]袁万明,杨志强,张招崇,等.安徽省黄山山体的隆升与剥露[J].中国科学:D辑,2011,41(10):1435-1443.
    [12]常健,邱楠生,李佳蔚,等.塔里木盆地与南天山的耦合关系:来自(U-Th)/He年龄的新证据[J].地学前缘,2012,19(5):234-243.
    [13]Shen C B,Donelich R A,O'sullivan P B,et al.Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin,Yangtze block,Central China[J].Sedimentary Geology,2012,281:194-207.
    [14]Pierce E L,Hemming S R,Williams T,et al.A comparison of detrital U-Pb zircon,40 Ar/39 Ar hornblende,40 Ar/39 Ar biotite ages in marine sediments off East Antarctica:Implications for the geology of subglacial terrains and provenance studies[J].Earth-Science Reviews,2014,138:156-178.
    [15]Roberts N M,Spencer C J.The zircon archive of continent formation through time[J].Geological Society,London,Special Publications,2015,389:197-225.
    [16]Brewer I D,Burbank D W,Hodges K V.Downstream development of a detrital cooling-age signal:Insights from40 Ar/39 Ar muscovite thermochronology in the Nepalese Himalaya[J].Geological Society of America Special Paper:Penrose Conference Series,2006,398:321-338.
    [17]Roy M,van de Flierdt T,Hemming S R,et al.40 Ar/39 Ar ages of hornblende grains and bulk Sm/Nd isotopes of circumAntarctic glacio-marine sediments:Implications for sediment provenance in the southern ocean[J].Chemical Geology,2007,244(3/4):507-519.
    [18]Vermeesch P,Avigad D,McWilliams M O.500m.y.of thermal history elucidated by multi-method detrital thermochronology of North Gondwana Cambrian sandstone(Eilat area,Israel)[J].Geological Society of America Bulletin,2009,121(7/8):1204-1216.
    [19]周久龙,罗照华,贺怀宇,等.河北大庙铁矿床黑云母40 Ar/39 Ar年龄及其地质意义[J].地学前缘,2012,19(4):110-117.
    [20]胡荣国,邱华宁,Wijbrans J,等.柴北缘鱼卡多硅白云母40 Ar/39 Ar年代学研究及其外来40 Ar来源探讨[J].地学前缘,2014,21(1):216-227.
    [21]Ruiz G M H,Seward D,Winkler W.Detrital thermochronology:A new perspective on hinterland tectonics,an example from the Andean Amazon Basin,Ecuador[J].Basin Research,2004,16(3):413-430.
    [22]Fillon C,Gautheron C,Vander B P.Oligocene-Miocene burial and exhumation of the Southern Pyrenean foreland quantified by low-temperature thermochronology[J].Journal of the Geological Society,2013,170(1):67-77.
    [23]Yuan W,Dong J,Carter A,et al.Mesozoic-Tertiary exhumation history of the Altai Mountains,northern Xinjiang,China:Constraints from apatite fission track data[J].Tectonophysics,2006,412(3/4):183-193.
    [24]高洪雷,刘红旭,何建国,等.东天山地区中-新生代隆升-剥露过程:来自磷灰石裂变径迹的证据[J].地学前缘,2014,21(1):249-260.
    [25]Krner A,Wan Y S,Liu X M,et al.Dating of zircon from high-grade rocks:Which is the most reliable method[J]?Geoscience Frontiers,2014,5(4):515-523.
    [26]陈文,万渝生,李华芹,等.同位素地质年龄测年技术及应用[J].地质学报,2001,85(11):1917-1949.
    [27]Cocherie A,Robert M.Laser ablation coupled with ICP-MS applied to U-Pb zircon geochronology:A review of recent advances[J].Gondwana Research,2008,14(4):597-608.
    [28]Wiedenbeck M,Bédard L P,Bugoi R,et al.GGR biennial critical review:Analytical developments since 2012[J].Geostandards and Geoanalytical Research,2014,38(4):467-512.
    [29]杨江海,殷鸿福.高精度锆石U-Pb年代学10年发展:浅谈中国科学家的机遇和挑战[J].地学前缘,2014,21(2):93-101.
    [30]杨亚楠,李秋立,刘宇,等.离子探针锆石U-Pb定年[J].地学前缘,2014,21(2):81-92.
    [31]Andersen T.Detrital zircons as tracers of sedimentary provenance:Limiting conditions from statistics and numerical simulation[J].Chemical Geology,2005,216(3/4):249-270.
    [32]朱文斌,万景林,舒良树,等.裂变径迹定年技术在构造演化研究中的应用[J].高校地质学报,2005,11(4):593-600.
    [33]闫义,林舸,李自安.利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J].大地构造与成矿学,2003,27(2):184-190.
    [34]金中国,周家喜,黄智龙,等.贵州务川—正安—道真地区铝土矿碎屑锆石U-Pb年龄及其地质意义[J].地学前缘,2013,20(6):226-239.
    [35]王策,梁新权,周云,等.莺歌海盆地东侧物源年龄标志的建立:来自琼西6条主要河流碎屑锆石LA-ICP-MS U-Pb年龄的研究[J].地学前缘,2015,22(4):277-289.
    [36]李忠,高剑,郭春涛,等.塔里木块体北部泥盆—石炭纪陆缘构造演化:盆地充填序列与物源体系约束[J].地学前缘,2015,22(1):35-52.
    [37]赵红格,刘池洋,王海然,等.鄂尔多斯盆地西北缘早—中侏罗世延安期碎屑锆石LA-ICP-MS定年及其物源意义[J].地学前缘,2015,22(3):184-193.
    [38]Ludwig K.User's manual for Isoplot 3.75,ageochronological toolkit for Microsoft Excel[J].Berkeley Geochronology Center Special Publication,2012,5:1-75.
    [39]Sircombe K N.AgeDisplay:An EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions[J].Computers and Geosciences,2004,30(1):21-31.
    [40]Fedo C M,Sircombe K N,Rainbird R H.Detrital zircon analysis of the sedimentary record[J].Reviews in Mineralogy and Geochemistry,2003,53(1):277-303.
    [41]Silverman B W.Density Estimation for Statistics and Data Analysis[M].London:Chapman and Hall,1986:1-178.
    [42]Hurford A,Fitch F,Clarke A.Resolution of the age structure of the detrital zircon populations of two Lower Creta-ceous sandstones from the Weald of England by fission track dating[J].Geological Magazine,1984,121(4):269-277.
    [43]Galbraith R.The trouble with“probability density”plots of fission track ages[J].Radiation Measurements,1998,29(2):125-131.
    [44]Brandon M T.Probability density plot for fission-track grainage samples[J].Radiation Measurements,1996,26(5):663-676.
    [45]Galbraith R.On plotting OSL equivalent doses[J].Ancient TL,2010,28(1):1-10.
    [46]Brandon M T.Decomposition of fission-track grain-age distributions[J].American Journal of Science,1992,292:534-564.
    [47]Vermeesch P.On the visualisation of detrital age distributions[J].Chemical Geology,2012,312:190-194.
    [48]于传强,郭晓松,张安,等.基于估计点的滑动窗宽核密度估计算法[J].兵工学报,2009,30(2):231-235.
    [49]唐林俊,杨虎,张洪阳.核密度估计在预测风险价值中的应用[J].数学的实践与认识,2006,35(10):29-35.
    [50]叶菲,罗军,高兴荣,等.基于滑动窗宽的非参数变宽直方图方法研究[J].现代防御技术,2014,42(2):106-110,149.
    [51]张保强,陈国平,郭勤涛.结构动力学模型确认问题的核密度估计方法[J].机械工程学报,2011,47(17):29-36.
    [52]崔恒建,王雪峰.核密度估计及其在直径分布研究中的应用[J].北京林业大学学报,1996,18(2):67-72.
    [53]李存华,孙志挥,陈耿,等.核密度估计及其在聚类算法构造中的应用[J].计算机研究与发展,2004,41(10):1712-1719.
    [54]尹训福,郝志峰,杨晓伟.快速核密度估计算法研究进展[J].计算机工程与应用,2007,43(31):1-4.
    [55]Clift,P D,Carter A,Nicholson U,et al.Zircon and apatite thermochronology of the Nankai Trough accretionary prism and trench,Japan:Sediment transport in an active and collisional margin setting[J].Tectonics,2013,32(3):377-395.
    [56]Berger G.An alternate form of probability-distribution plots for DE values[J].Ancient TL,2010,28(1):11-21.
    [57]Loftsgaarden D O,Quesenberry C P.A nonparametric estimate of a multivariate density function[J].The Annals of Mathematical Statistics,1965,36(3):1049-1051.
    [58]Breiman L,Meisel W,Purcell E.Variable kernel estimates of multivariate densities[J].Technometrics,1977,19(2):135-144.
    [59]Botev Z I,Grotowski J F,Kroese D P.Kernel density estimation via diffusion[J].Annals of Statistics,2010,38:2916-2957.
    [60]Wu F Y,Sun D Y,Ge W C,et al.Geochronology of the Phanerozoic granitoids in northeastern China[J].Journal of Asian Earth Sciences,2011,41(1):1-30.
    [61]Wang C,Feng Z,Zhang L,et al.Cretaceous paleogeography and paleoclimate and the setting of SK1 borehole sites in Songliao Basin,northeast China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2013,385:17-30.
    [62]王璞珺,赵然磊,蒙启安,等.白垩纪松辽盆地:从火山裂谷到陆内拗陷的动力学环境[J].地学前缘,2015,22(3):99-117.
    [63]Feng Z Q,Jia C Z,Xie X N,et al.Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin,Northeast China[J].Basin Research,2010,22(1):79-95.
    [64]Song Y,Ren J,Stepashko A A,et al.Post-rift geodynamics of the Songliao Basin,NE China:Origin and significance of T11(Coniacian)unconformity[J].Tectonophysics,2014,634:1-18.
    [65]Song Y,Stepashko A A,Ren J.The Cretaceous climax of compression in Eastern Asia:Age 87-89Ma(late Turonian/Coniacian),Pacific cause,continental consequences[J].Cretaceous Research,2015,55:262-284.
    [66]Ketcham R A.Forward and inverse modeling of low-temperature thermochronometry data[J].Reviews in Mineralogy and Geochemistry,2005,58(1):275-314.
    [67]Ketcham R A,Donelick R A,Carlson W D.Variability of apatite fission-track annealing kinetics:III.Extrapolation to geological time scales[J].American Mineralogist,1999,84:1235-1255.
    [68]Himeno O,Ohira H,Liu Z,et al.Provenance ages of Cretaceous strata in the Songliao Basin,Northeast China inferred from fission track data[J].International Geology Review,2001,43(10):945-952.
    [69]Wan X,Zhao J,Scott R W,et al.Late Cretaceous stratigraphy,Songliao Basin,NE China:SK1cores[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2013,385:31-43.
    [70]Scott R W,Wan X,Wang C,et al.Late Cretaceous chronostratigraphy(Turoniane-Maastrichtian):SK1core Songliao Basin,China[J].Geoscience Frontiers,2012,3(4):357-367.
    [71]Stepashko A A.The Cretaceous dynamics of the Pacific plate and stages of magmatic activity in Northeastern Asia[J].Geotectonics,2006,40(3):225-235.
    [72]Stepashko A A.Spreading cycles in the Pacific Ocean[J].Oceanology,2008,48(3):401-408.
    [73]Norton I O.Speculations on Cretaceous tectonic history of the northwest Pacific and a tectonic origin for the Hawaii hotspot[J].Geological Society of America,Special Papers,2007,430:451-470.
    [74]侯启军,冯志强,冯子辉,等.松辽盆地陆相石油地质学[M].北京:石油工业出版社,2009:21-103.
    [75]方石,张志强,刘招君,等.松辽盆地新生代热演化及地层定年[J].吉林大学学报:地球科学版,2007,37(5):923-928.
    [76]Ren J,Tamaki K,Li S,et al.Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J].Tectonophysics,2002,344:175-205.
    [77]Wan C,Sun Y,Xue Y,et al.Neogene palynological assemblages in the west slope of Songliao Basin and their geological implications[J].Science China:Earth Sciences,2014,57(10):2486-2497.
    [78]薛云飞,万传彪.松辽盆地来D13井地层划分对比研究[J].微体古生物学报,2015,32(1):28-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700