用户名: 密码: 验证码:
短链脂肪酸的生理功能及其在畜禽生产中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological Function of Short-Chain Fatty Acids and Their Application in Livestock and Poultry Production
  • 作者:陈福 ; 何邵平 ; 田科雄 ; 贺建华
  • 英文作者:CHEN Fu;HE Shaoping;TIAN Kexiong;HE Jianhua;College of Animal Science and Technology,Hunan Agricultural University;
  • 关键词:短链脂肪酸 ; 生理功能 ; 畜禽生产 ; 肠道菌群
  • 英文关键词:short-chain fatty acids;;physiological function;;livestock and poultry production;;intestinal flora
  • 中文刊名:DWYX
  • 英文刊名:Chinese Journal of Animal Nutrition
  • 机构:湖南农业大学动物科学技术学院;
  • 出版日期:2019-05-08 14:58
  • 出版单位:动物营养学报
  • 年:2019
  • 期:v.31
  • 基金:湖南省战略性新兴产业项目(2014GK1034)
  • 语种:中文;
  • 页:DWYX201907014
  • 页数:10
  • CN:07
  • ISSN:11-5461/S
  • 分类号:106-115
摘要
短链脂肪酸(SCFAs)是指碳原子数目不大于6的脂肪酸,在肠道中以乙酸、丙酸和丁酸含量居高。在生物体内SCFAs具有提供能量、调节免疫、调控肠道细胞代谢、维持水电解质平衡、改善肠道菌群结构等多种重要的生物学功能。本文就机体内SCFAs的产生、SCFAs的生理功能及其在畜禽生产中的应用研究进展进行综述,旨在为SCFAs的开发利用提供理论依据。
        Short-chain fatty acids( SCFAs) refer to fatty acids having a carbon number of not more than 6,and are high in the intestinal tract with acetate,propionate and butyrate. In vivo,SCFA has many important biological functions such as providing energy,regulating immunity,regulating intestinal cell metabolism,maintaining water and electrolyte balance,and improving intestinal flora structure. This paper reviewed the advances of SCFAs,including the physiological functions of SCFAs and their application in livestock and poultry production,aiming to provide a theoretical basis for the development and utilization of SCFAs.[Chinese Journal of Animal Nutrition,2019,31(7):3039-3048]
引文
[1] CANANI R B,DI COSTANZO M,LEONE L,et al.Epigenetic mechanisms elicited by nutrition in early life[J]. Nutrition Research Reviews,2011,24(2):198-205.
    [2] SIKANDAR A,ZANEB H,YOUNUS M,et al.Effect of sodium butyrate on performance,immune status,microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens[J]. Asian-Australasian Journal of Animal Sciences,2017,30(5):690-699.
    [3] XIA S,YAO W,ZOU B,et al. Effects of potassium diformate on the gastric function of weaning piglets[J].Animal Production Science,2016,56(7):1161-1166.
    [4]李丹丹,冯国强,钮海华,等.丁酸钠对断奶仔猪生长性能及免疫功能的影响[J].动物营养学报,2012,24(2):307-313.
    [5] TOPPING D L,CLIFTON P M.Short-chain fatty acids and human colonic function:roles of resistant starch and nonstarch polysaccharides[J]. Physiological Reviews,2001,81(3):1031-1064.
    [6] KUMAR A,ALREFAI W A,BORTHAKUR A,et al.Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology,2015,309(7):G602-G607.
    [7] TAN J,MCKENZIE C,POTAMITIS M,et al.The role of short-chain fatty acids in health and disease[J].Advances in Immunology,2014,121:91-119.
    [8] ROBERFROID MB. Introducing inulin-type fructans[J].British Journal of Nutrition,2005,93(S1):S13-S25.
    [9] MACFARLANE S,MACFARLANE G T. Regulation of short-chain fatty acid production[J]. The Proceedings of the Nutrition Society,2003,62(1):67-72.
    [10] LATTIMER J M,HAUB MD.Effects of dietary fiber and its components on metabolic health[J].Nutrients,2010,2(12):1266-1289.
    [11] MARTIN L J M,DUMON H J W,CHAMP MMJ.Production of short-chain fatty acids from resistant starch in a pig model[J]. Journal of the Science of Food and Agriculture,1998,77(1):71-80.
    [12] ROY C C,KIEN C L,BOUTHILLIER L,et al.Shortchain fatty acids:ready for prime time?[J]. Nutrition in Clinical Practice,2006,21(4):351-366.
    [13] LOUIS P,HOLD G L,FLINT H J.The gut microbiota,bacterial metabolites and colorectal cancer[J]. Nature Reviews Microbiology,2014,12(10):661-672.
    [14] TAZOE H,OTOMO Y,KAJI I,et al. Roles of shortchain fatty acids receptors,GPR41 and GPR43 on colonic functions[J].Journal of Physiology and Pharmacology,2008,59 Suppl.2:251-262.
    [15] FAN P X,LI L S,REZAEI A,et al.Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut[J].Current Protein&Peptide Science,2015,16(7):646-654.
    [16] VITAL M,HOWE A C,TIEDJE J M. Revealing the bacterial butyrate synthesis pathways by analyzing(Meta)genomic data[J]. MBio,2014,5(2):e00889-14.
    [17] KOH A,DE VADDER F,KOVATCHEVA-DATCHARY P,et al. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites[J].Cell,2016,165(6):1332-1345.
    [18] RIOS-COVIAN D,SALAZAR N,GUEIMONDE M,et al.Shaping the metabolism of intestinal Bacteroides population through diet to improve human health[J].Frontiers in Microbiology,2017,8:376.
    [19] DEN BESTEN G,LANGE K,HAVINGA R,et al.Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids[J]. American Journal of Physiology:Gastrointestinal and Liver Physiology,2013,305(12):G900-G910.
    [20] REY F E,FAITH J J,BAIN J,et al.Dissecting the in vivo metabolic potential of two human gut acetogens[J]. The Journal of Biological Chemistry,2010,285(29):22082-22090.
    [21] RAGSDALE S W,PIERCE E. Acetogenesis and the Wood-Ijungdahl pathway of CO2fixation[J]. Biochimica et Biophysica Acta:Proteins and Proteomics,2008,1784(12):1873-1898.
    [22] SCOTT K P,MARTIN J C,CAMPBELL G,et al.Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”[J]. Journal of Bacteriology,2006,188(12):4340-4349.
    [23] HOSSEINI E,GROOTAERT C,VERSTRAETE W,et al.Propionate as a health-promoting microbial metabolite in the human gut[J]. Nutrition Reviews,2011,69(5):245-258.
    [24] DUNCAN S H,BARCENILLA A,STEWART C S,et al. Acetate utilization and butyryl coenzyme A(CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine[J]. Applied and Environmental Microbiology,2002,68(10):5186-5190.
    [25] CUMMINGS J H,BINGHAMS A,HEATON K W,et al.Fecal weight,colon cancer risk,and dietary intake of nonstarch polysaccharides(dietary fiber)[J]. Gastroenterology,1992,103(6):1783-1789.
    [26] MACFARLANE S,QUIGLEY ME,HOPKINS MJ,et al. Polysaccharide degradation by human intestinal bacteria during growth under multi-ubstrate limiting conditions in a three-tage continuous culture system[J].FEMS Microbiology Ecology,1998,26(3):231-243.
    [27] BYRNE C S,CHAMBERS E S,MORRISON D J,et al.The role of short chain fatty acids in appetite regulation and energy homeostasis[J]. International Journal of Obesity,2015,39(9):1331-1338.
    [28] KIMM,QIE Y Q,PARK J,et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host&Microbe,2016,20(2):202-214.
    [29] RICHARDS J L,YAP Y A,MCLEOD K H,et al.Dietary metabolites and the gut microbiota:an alternative approach to control inflammatory and autoimmune diseases[J].Clinical&Translational Immunology,2016,5(5):e82.
    [30] CHANG P V,HAO L M,OFFERMANNS S,et al.The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(6):2247-2252.
    [31] LE POUL E,LOISON C,STRUYF S,et al.Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J].Journal of Biological Chemistry,2003,278(28):25481-25489.
    [32] MASLOWSKI K M,VIEIRA A T,NG A,et al.Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature,2009,461(7268):1282-1286.
    [33] ARPAIA N,CAMPBELL C,FAN X Y,et al.Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J].Nature,2013,504(7480):451-455.
    [34] FURUSAWA Y,OBATA Y,FUKUDA S,et al.Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature,2013,504(7480):446-450.
    [35] THANGARAJU M,CRESCI G A,LIU K B,et al.GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon[J].Cancer Research,2009,69(7):2826-2832.
    [36] SINGH N,GURAV A,SIVAPRAKASAMS,et al.Activation of GPR109A,receptor for niacin and the commensal metabolite butyrate,suppresses colonic inflammation and carcinogenesis[J]. Immunity,2014,40(1):128-139.
    [37] KIMH J,BAE S C. Histone deacetylase inhibitors:molecular mechanisms of action and clinical trials as anti-cancer drugs[J].American Journal of Translational Research,2011,3(2):166-179.
    [38] FLINT H J,SCOTT K P,LOUIS P,et al.The role of the gut microbiota in nutrition and health[J]. Nature Reviews Gastroenterology&Hepatology,2012,9(10):577-589.
    [39] DAVIE J R. Inhibition of histone deacetylase activity by butyrate[J]. Journal of Nutrition,2003,133(7Suppl):2485S-2493S.
    [40] LIU H,WANG J,HE T,et al.Butyrate:a double-edged sword for health?[J]. Advances in Nutrition,2018,9(1):21-29.
    [41] SUN MM,WU W,LIU Z J,et al.Microbiota metabolite short chain fatty acids,GPCR,and inflammatory bowel diseases[J].Journal of Gastroenterology,2017,52(1):1-8.
    [42] LIN MY,DE ZOETE MR,VAN PUTTEN J P M,et al. Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases[J]. Frontiers in Immunology,2015,6:554.
    [43] VINOLO MA R,HATANAKA E,LAMBERTUCCI R H,et al.Effects of short chain fatty acids on effector mechanisms of neutrophils[J]. Cell Biochemistry&Function,2009,27(1):48-55.
    [44] GURAV A,SIVAPRAKASAMS,BHUTIA Y D,et al. SLC5A8,a Na+-coupled high-affinity transporter for short-chain fatty acids,is a conditional tumor suppressor in colon that protects against colitis and colon cancer under low-fiber dietary conditions[J].The Biochemical Journal,2015,469(2):267-278.
    [45] PARK J,KIMM,KANG S G,et al.Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway[J]. Mucosal Immunology,2015,8(1):80-93.
    [46] ISHIKAWA T,NANJO F.Dietary cycloinulooligosaccharides enhance intestinal immunoglobulin A production in mice[J]. Bioscience,Biotechnology,and Biochemistry,2009,73(3):677-682.
    [47] NEPELSKA M,DE WOUTERS T,JACOUTON E,et al.Commensal gut bacteria modulate phosphorylationdependent PPARγtranscriptional activity in human intestinal epithelial cells[J].Scientific Reports,2017,7:43199.
    [48] BYNDLOSS MX,OLSAN E E,RIVERA-CHVEZ F,et al.Microbiota-activated PPAR-γsignaling inhibits dysbiotic Enterobacteriaceae expansion[J]. Science,2017,357(6351):570-575.
    [49] MA X,FAN P X,LI L S,et al.Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions[J]. Journal of Animal Science,2012,90(Suppl.4):266-268.
    [50] KIMURA I,INOUE D,MAEDA T,et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41(GPR41)[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(19):8030-8035.
    [51] TONG L C,WANG Y,WANG Z B,et al.Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress[J]. Frontiers in Pharmacology,2016,7:253.
    [52] PENG L Y,LI Z R,GREEN R S,et al.Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers[J]. The Journal of Nutrition,2009,139(9):1619-1625.
    [53] HUANG C,SONG P X,FAN P X,et al.Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets[J].The Journal of Nutrition,2015,145(12):2774-2780.
    [54] MARCIL V,DELVIN E,SEIDMAN E,et al.Modulation of lipid synthesis,apolipoprotein biogenesis,and lipoprotein assembly by butyrate[J].American Journal Physiology:Gastrointestinal and Liver Physiology,2002,283(2):G340-G346.
    [55] SHEN H,LU Z Y,XU Z H,et al.Associations among dietary non-fiber carbohydrate,ruminal microbiota and epithelium G-protein-coupled receptor,and histone deacetylase regulations in goats[J]. Microbiome,2017,5(1):123.
    [56] KUNZELMANN K,MALL M.Electrolyte transport in the mammalian colon:mechanisms and implications for disease[J]. Physiological Reviews,2002,82(1):245-289.
    [57] RABBANI G H,ALBERT MJ,RAHMAN H,et al.Short-chain fatty acids inhibit fluid and electrolyte loss induced by cholera toxin in proximal colon of rabbit in vivo[J]. Digestive Diseases and Sciences,1999,44(8):1547-1553.
    [58] BINDER H J,MEHTA P.Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon[J]. Gastroenterology,1989,96(4):989-996.
    [59] VIDYASAGAR S,RAMAKRISHNA B S. Effects of butyrate on active sodium and chloride transport in rat and rabbit distal colon[J]. Journal of Physiology,2010,539(1):163-173.
    [60] LIEMA,PESTI G M,EDWARDS H M,Jr.The effect of several organic acids on phytate phosphorus hydrolysis in broiler chicks[J]. Poultry Science,2008,87(4):689-693.
    [61] HUANG X Z,LI Z R,ZHU L B,et al. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2cell monolayer model[J]. Journal of Pediatric Gastroenterology and Nutrition,2014,59(2):264-269.
    [62] VAN IMMERSEEL F,FIEVEZ V,DE BUCK J,et al.Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella enteritidis in young chickens[J]. Poultry Science,2004,83(1):69-74.
    [63]郭传珍,曹兵海.丁酸钠对肉鸡肠道pH值、微生物菌群和挥发性脂肪酸的影响研究[J].中国家禽,2009,31(21):14-17,21.
    [64] TROMPETTE A,GOLLWITZER E S,YADAVA K,et al.Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J].Nature Medicine,2014,20(2):159-166.
    [65] CANI P D. Gut cell metabolism shapes the microbiome[J].Science,2017,357(6351):548-549.
    [66]寇莎莎,王诏升,徐德旺,等.日粮中添加不同水平丁酸钠对断奶仔猪生长性能、腹泻率及血液生化指标的影响[J].中国畜牧兽医,2018,45(7):1841-1848.
    [67]李虹瑾,沙万里,尹柏双,等.包膜丁酸钠对断奶仔猪肠道菌群及生长性能的影响[J].家畜生态学报,2017,38(9):30-34.
    [68]黄建华,李春莲,杨凤梅,等.二甲酸钾对断奶仔猪大肠杆菌和乳酸杆菌的影响[J].湖北农业科学,2013,52(1):124-126.
    [69]钟翔,黄小国,陈莎莎,等.丁酸钠对断奶仔猪生长性能和肠道消化酶活性的影响[J].动物营养学报,2009,21(5):719-726.
    [70] RAGAA N M,KORANY R MS.Studying the effect of formic acid and potassium diformate on performance,immunity and gut health of broiler chickens[J].Animal Nutrition,2016,2(4):296-302.
    [71]张浩,董磊,王英俊,等.丁酸甘油酯对肉鸡生长性能、养分表观消化率、屠宰性能、肠道形态及微生物菌群的影响[J].中国畜牧兽医,2016,43(8):2013-2019.
    [72]赵民,徐小芳,余荣.包膜丁酸钠对青脚麻种鸡生产性能的影响[J].饲料工业,2012,33(20):33-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700