用户名: 密码: 验证码:
海洋用金属材料的微生物腐蚀研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in Microbiologically Influenced Corrosion of Metallic Materials in Marine Environment
  • 作者:刘丹 ; 杨纯田 ; 周恩泽 ; 杨洪英 ; 李中 ; 徐大可 ; 王福会
  • 英文作者:LIU Dan;YANG Chun-tian;ZHOU En-ze;YANG Hong-ying;LI Zhong;XU Da-ke;WANG Fu-hui;Northeastern University;
  • 关键词:海洋用金属材料 ; 微生物腐蚀 ; 生物被膜 ; 微生物腐蚀机理 ; 抗菌材料 ; D-氨基酸
  • 英文关键词:metallic material;;microbial corrosion;;biofilm;;corrosion mechanism;;antibacterial material;;D-Amino acids
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:东北大学;
  • 出版日期:2019-07-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金项目(U1660118,51871050)~~
  • 语种:中文;
  • 页:BMJS201907020
  • 页数:9
  • CN:07
  • ISSN:50-1083/TG
  • 分类号:180-188
摘要
虽然海洋环境下所使用的金属材料的机械性能和耐蚀性能都较好,但近年来关于海洋工程材料腐蚀失效的报道却越来越多。以海洋环境下金属材料的腐蚀为背景,重点介绍了近年来逐渐引起人们重视的金属材料微生物腐蚀的研究进展。一些经典的腐蚀理论虽然能够解释一些微生物腐蚀现象,但是目前微生物腐蚀逐渐成为很多工业环境下普遍存在的严重问题,这些机理的片面性也就逐渐暴露出来。随着研究的深入,人们对微生物腐蚀机理的认识更加全面、深入。研究者逐步提出了基于生物能量学和生物电化学的微生物腐蚀理论,该理论引入了微生物胞外电子传递过程,解释了微生物为什么和如何腐蚀金属材料,并获得了学术界的普遍认可。为了解决传统抗微生物腐蚀方法的诸多不足,开发新型抗菌材料、研发环保型杀菌剂和杀菌剂增效剂将会为微生物腐蚀防治提供新思路。
        Although the metallic materials used in marine environment have good mechanical properties and corrosion resistance, there are more and more reports on corrosion failure of marine engineering materials in recent years. The work aims to introduce the research progress of microbiologically influenced corrosion(MIC) of metallic materials in the marine environment, which has attracted greater attention in recent years based on the corrosion of metallic materials in marine environment.Although the classical corrosion theories can explain some of the MIC phenomena, limitations of these mechanisms are exposed when MIC is becoming a serious concern in real industrial applications. With the progress of research, people have a more comprehensive and in-depth understanding on mechanism of MIC. Researchers have proposed the MIC theory based on bioenergetics and bioelectrochemistry. This theory introduces the extracellular electron transfer(EET), and explains why and how the microorganism corrodes the metallic materials and has been widely accepted by academic circles. In order to resolve the shortcomings of traditional anti-MIC methods, the development of novel antibacterial materials, and environment-friendly bactericides and biocide enhancers might provide new prospects for the prevention and control of MIC.
引文
[1]STEWART M G,AL-HARTHY A.Pitting corrosion and structural reliability of corroding RC structures:Experimental data and probabilistic analysis[J].Reliability engineering&system safety,2008,93(3):373-382.
    [2]LI X,ZHANG D,LIU Z,et al.Materials science:Share corrosion data[J].Nature,2015,527:441.
    [3]LIU J,JIA R,ZHOU E,et al.Antimicrobial Cu-bearing2205 duplex stainless steel against MIC by nitrate reducing pseudomonas aeruginosa biofilm[J].International biodeterioration&biodegradation,2018,132:132-138.
    [4]DONG Y,JIANG B,XU D,et al.Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium acidithiobacillus caldus SM-1[J].Bioelectrochemistry,2018,123:34-44.
    [5]DRACH A,TSUKROV I,DECEW J,et al.Field studies of corrosion behaviour of copper alloys in natural seawater[J].Corrosion science,2013,76:453-464.
    [6]VERA R,VERDUGO P,ORELLANA M,et al.Corrosion of aluminium in copper-aluminium couples under a marine environment:Influence of polyaniline deposited onto copper[J].Corrosion science,2010,52(11):3803-3810.
    [7]LU Z,WANG P,ZHANG D.Super-hydrophobic film fabricated on aluminium surface as a barrier to atmospheric corrosion in a marine environment[J].Corrosion science,2015,91:287-296.
    [8]STIPANICEV M,TURCU F,ESNAULT L,et al.Corrosion of carbon steel by bacteria from north sea offshore seawater injection systems:Laboratory investigation[J].Bioelectrochemistry,2014,97:76-88.
    [9]WIKIE?A J,DATSENKO I,VERA M,et al.Impact of desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment[J].Bioelectrochemistry,2014,97:52-60.
    [10]ROMáNSZKI L,DATSENKO I,MAY Z,et al.Polystyrene films as barrier layers for corrosion protection of copper and copper alloys[J].Bioelectrochemistry,2014,97:7-14.
    [11]宋德军,胡光远,卢海,等.镍铝青铜合金的应用与研究现状[J].材料导报,2007(S3):450-452.SONG De-jun,HU Guang-yuan,LU Hai,et al.Survey of progress on the research and practice of nickel-aluminium braze[J].Materials review,2007(S3):450-452.
    [12]尹立辉.服役黄铜管及实海金属试片腐蚀电化学检测研究[D].天津:天津大学,2004.YIN Li-hui.Research on corrosion electrochemical detecting of brass tubes in service and seawater metal samples[D].Tianjin:Tianjin University,2004.
    [13]李超,张建丽,黄桂桥,等.国产海水淡化装置铝黄铜换热管腐蚀调查分析[J].装备环境工程,2014(3):105-109.LI Chao,ZHANG Jian-li,HUANG Gui-qiao,et al.Corrosion analyses of aluminum brass tube heat exchanger in homemade equipment for seawater desalination[J].Equipment environment engineering,2014(3):105-109.
    [14]朱建军.低镍白铜在海洋环境中的应用[J].江苏冶金,2003(6):21-22.ZHU Jian-jun.Application of B10 in Marine environment[J].Jiangsu metallurgy,2003(6):21-22.
    [15]朱小龙,林乐耘,雷廷权.70Cu-30Ni合金海水腐蚀产物膜形成过程[J].金属学报,1997(12):1256-1261.ZHU Xiao-long,LIN Le-yun,LEI Ting-quan.Process of formation of corrosion films on alloy 70Cu-30Ni[J].Acta metallurgica sinica,1997(12):1256-1261.
    [16]谭华.双相不锈钢焊缝组织演变与腐蚀行为研究[D].上海:复旦大学,2012.TAN Hua.Investigation on Corrosion behaviors and microstructure evolution of duplex stainless steels welded joint[D].Shanghai:Fudan University,2012.
    [17]TSAI W T,CHEN M S.Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated NaCl solution[J].Corrosion science,2000,42(3):545-559.
    [18]NILSSON J O.Super duplex stainless steels[J].Materials science and technology,1992,8:685-700.
    [19]SARLAK H,ATAPOUR M,ESMAILZADEH M.Corrosion behavior of friction stir welded lean duplex stainless steel[J].Materials&design,2015,66:209-216.
    [20]王文明,张毅.Cl-浓度对双相钢和镍基合金腐蚀速率的影响[J].腐蚀与防护,2012(7):596-600.WANG Wen-ming,ZHANG Yi.Concentration on corrosion rates of duplex stainless steels and Ni-based alloys[J].Corrosion protection,2012(7):596-600.
    [21]DUAN J,WU S,ZHANG X,et al.Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J].Electrochimica acta,2008,54(1):22-28.
    [22]GUAN F,ZHAI X,DUAN J,et al.Influence of sulfate-reducing bacteria on the corrosion behavior of 5052aluminum alloy[J].Surface and coatings technology,2017,316:171-179.
    [23]陈士强.微生物所致典型海洋工程金属材料局部腐蚀机理研究[D].青岛:中国科学院研究生院(海洋研究所),2015.CHEN Shi-qiang.The study of localized corrosion mechanism of typical engineering metal material in seawater containing microorganism[D].Qingdao:Institute of Oceanology,Chinese Academy of Science,2015.
    [24]LITTLE B,WAGNER P,MANSFELD F.An overview of microbiologically influenced corrosion[J].Electrochimica acta,1992,37(12):2185-2194.
    [25]VIDELA H A.Prevention and control of biocorrosion[J].International biodeterioration&biodegradation,2002,49(4):259-270.
    [26]LAGREE K,DESAI J V,FINKEL J S,et al.Microscopy of fungal biofilms[J].Current opinion in microbiology,2018,43:100-107.
    [27]KOJIC E M,DAROUICHE R O.Candida infections of medical devices[J].Clinical microbiology reviews,2004,17(2):255-267.
    [28]RITTMANN B E.Biofilms,active substrata,and me[J].Water research,2018,132:135-145.
    [29]LEE H S.Electrokinetic analyses in biofilm anodes:Ohmic conduction of extracellular electron transfer[J].Bioresource technology,2018,256:509-514.
    [30]HALL-STOODLEY L,COSTERTON J W,STOODLEYP.Bacterial biofilms:From the natural environment to infectious diseases[J].Nature reviews microbiology,2004,2(2):95-108.
    [31]GREENE E A,HUBERT C,NEMATI M,et al.Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing,sulphide-oxidizing bacteria[J].Environmental microbiology,2003,5(7):607-617.
    [32]YUAN S J,PEHKONEN S O.AFM study of microbial colonization and its deleterious effect on 304 stainless steel by pseudomonas NCIMB 2021 and desulfovibrio desulfuricans in simulated seawater[J].Corrosion science,2009,51(6):1372-1385.
    [33]XU C,ZHANG Y,CHENG G,et al.Pitting corrosion behavior of 316L stainless steel in the media of sulphate-reducing and iron-oxidizing bacteria[J].Materials characterization,2008,59(3):245-255.
    [34]XU F,DUAN J,LIN C,et al.Influence of marine aerobic biofilms on corrosion of 316L stainless steel[J].Journal of iron and steel research,international,2015,22(8):715-720.
    [35]BHANDARI J,KHAN F,ABBASSI R,et al.Modelling of pitting corrosion in marine and offshore steel structures-A technical review[J].Journal of loss prevention in the process industries,2015,37:39-62.
    [36]HEITZ E.Mechanistically based prevention strategies of flow-induced corrosion[J].Electrochimica acta,1996,41(4):503-509.
    [37]GU T.New Understandings of biocorrosion mechanisms and their classifications[J].Journal of microbial&biochemical technology,2012,4(4):Ⅲ-Ⅴ.
    [38]CALDWELL D,KORBER D,LAWRENCE J.Confocal laser microscopy and digital image analysis in microbial ecology[J].Advances in microbial ecology,1993,12:1-67.
    [39]HAMILTON W A.Sulphate-reducing bacteria and anaerobic corrosion[J].1985,39:195-217.
    [40]CRAIG B D,MCNEIL M B,LITTLE B J.Discussion of mackinawite formation during microbial corrosion[J].Corrosion,1991,47:329-329.
    [41]XU D,LI Y,SONG F,et al.Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium bacillus licheniformis[J].Corrosion science,2013,77:385-390.
    [42]ZHANG P,XU D,LI Y,et al.Electron mediators accelerate the microbiologically influenced corrosion of 304stainless steel by the desulfovibrio vulgaris biofilm[J].Bioelectrochemistry,2015,101:14-21.
    [43]XU D,GU T.Carbon source starvation triggered more aggressive corrosion against carbon steel by the desulfovibrio vulgaris biofilm[J].International biodeterioration&biodegradation,2014,91:74-81.
    [44]LAMPREIA J,FAUQUE G,SPEICH N,et al.Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium archaeglobus fulgidus[J].Biochemical and biophysical research communications,1991,181:342-347.
    [45]XU D,GU T.Carbon source starvation triggered more aggressive corrosion against carbon steel by the desulfovibrio vulgaris biofilm[J].International biodeterioration&biodegradation,2014,91:74-81.
    [46]JIA R,YANG D,XU J,et al.Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing pseudomonas aeruginosa biofilm under organic carbon starvation[J].Corrosion science,2017,127:1-9.
    [47]LOVLEY D R.The microbe electric:Conversion of organic matter to electricity[J].Current opinion in biotechnology,2008,19(6):564-571.
    [48]SAKAI K,XIA H,KITAZUMI Y,et al.Assembly of direct-electron-transfer-type bioelectrodes with high performance[J].Electrochimica acta,2018,271:305-311.
    [49]STEININGER C,REINER-ROZMAN C,SCHWAI GH-OFER A,et al.Kinetics of cytochrome c oxidase from R.sphaeroides initiated by direct electron transfer followed by tr-SEIRAS[J].Bioelectrochemistry,2016,112:1-8.
    [50]REGUERA G,MCCARTHY K D,MEHTA T,et al.Extracellular electron transfer via microbial nanowires[J].Nature,2005,435(7045):1098-1101.
    [51]MALVANKAR N S,LOVLEY D R.Microbial nanowires for bioenergy applications[J].Current opinion in biotechnology,2014,27:88-95.
    [52]GORBY Y A,YANINA S,MCLEAN J S,et al.Electrically conductive bacterial nanowires produced by shewanella oneidensis strain MR-1 and other microorganisms[J].Proceedings of the national academy of sciences,2006,103(30):11358-11363.
    [53]ENNING D,VENZLAFF H,GARRELFS J,et al.Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust[J].Environmental microbiology,2012,14(7):1772-1787.
    [54]VENZLAFF H,ENNING D,SRINIVASAN J,et al.Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J].Corrosion science,2013,66:88-96.
    [55]QIAO Y J,QIAO Y,ZOU L,et al.Biofilm promoted current generation of pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines[J].Bioelectrochemistry,2017,117:34-39.
    [56]MIN D,CHENG L,ZHANG F,et al.Enhancing extracellular electron transfer of shewanella oneidensis MR-1through coupling improved flavin synthesis and metalreducing conduit for pollutant degradation[J].Environmental science&technology,2017,51(9):5082-5089.
    [57]CHEN J J,CHEN W,HE H,et al.Manipulation of microbial extracellular electron transfer by changing molecular structure of Phenazine-type redox mediators[J].Environmental science&technology,2013,47(2):1033-1039.
    [58]JIA R,YANG D,XU D,et al.Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing pseudomonas aeruginosa biofilm[J].Bioelectrochemistry,2017,118:38-46.
    [59]王毅,张盾.船舶微生物腐蚀与防护研究进展[J].装备环境工程,2018,15(10):33-38.WANG Yi,ZHANG Dun.Research progress on microbial influenced corrosion and protection of ships[J].Equipment environmental engineering,2018,15(10):33-38.
    [60]HELLIO C,YEBRA D.Advances in marine antifouling coatings and technologies[M].New York:CRC Press,2009.
    [61]ZHAI X,MA X,MYAMINA M,et al.Electrochemical study on 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one-added zinc coating in phosphate buffer saline medium with escherichia coli[J].Journal of solid state electrochemistry2015,19(8):2213-2222.
    [62]SUN D,SHAHZAD M B,LI M,et al.Antimicrobial materials with medical applications[J].Materials&processing report,2015,30(sup6):90-95.
    [63]HONG D,CAO G,QU J,et al.Antibacterial activity of Cu2O and Ag co-modified rice grains-like Zn O nanocomposites[J].Journal of materials science&technology,2018,34(12):2359-2367.
    [64]MEKALA R,DEEPA B,RAJENDRAN V.Preparation,characterization and antibacterial property of rare earth(Dy and Ce)doping on ZrO2 nanoparticles prepared by co-precipitation method[J].Materials today:Proceedings2018,5(2):8837-8843.
    [65]DE D,MANDAL S M,GAURI S S,et al.Antibacterial effect of lanthanum calcium manganate(La0.67Ca0.33-Mn O3)nanoparticles against pseudomonas aeruginosa ATCC 27853[J].Journal of biomedical nanotechnology,2010,6(2):138-144.
    [66]JING F J,HUANG N,LIU Y W,et al.Hemocompatibility and antibacterial properties of lanthanum oxide films synthesized by dual plasma deposition[J].Journal of biomedical materials research part A,2008,87(4):1027-1033.
    [67]敬和民,吴欣强,刘永前,等.含铈不锈钢的抗菌性能[J].中国稀土学报,2006(2):223-226.JING He-min,WU Xin-qiang,LIU Yong-qian,et al.Antibacterial properties of cerium-bearing stainless steel[J].Journal of the Chinese rare earth society,2006(2):223-226.
    [68]YUAN J P,LI W,WANG C.Effect of the La alloying addition on the antibacterial capability of 316L stainless steel[J].Materials science and engineering:C,2013,33(1):446-452.
    [69]IBRAHIM M,WANG F,LOU M,et al.Copper as an antibacterial agent for human pathogenic multidrug resistant burkholderia cepacia complex bacteria[J].Journal of bioscience and bioengineering,2011,112(6):570-576.
    [70]ZHANG D,REN L,ZHANG Y,et al.Antibacterial activity against porphyromonas gingivalis and biological characteristics of antibacterial stainless steel[J].Colloids surf surf B biointerfaces,2013,105(4):51-57.
    [71]NAN L,CHENG J,YANG K.Antibacterial behavior of a Cu-bearing type 200 stainless steel[J].Journal of materials science&technology,2012,28(11):1067-1070.
    [72]杨柯,董加胜,陈四红,等.含Cu抗菌不锈钢的工艺与耐蚀性能[J].材料研究学报,2006(5):523-527.YANG K,DONG Jia-sheng,CHEN Si-hong,et al.The craftwork performance and resistance to corrosion of the Cu-containing antibacterial stainless steels[J].Chinese journal of materials research,2006(5):523-527.
    [73]XIA J,YANG C,XU D,et al.Laboratory investigation of the microbiologically influenced corrosion(MIC)resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine pseudomonas aeruginosa biofilm[J].Biofouling,2015,31(6):481-492.
    [74]XU D,LI Y,GU T.D-methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio vulgaris biofilm and biocorrosion pitting:D-methionine enhanced biofilm mitigation[J].Materials and corrosion,201465(8):837-845.
    [75]ZILM P S,BUTNEJSKI V,ROSSI-FEDELE G,et al.D-amino acids reduce enterococcus faecalis biofilms in vitro and in the presence of antimicrobials used for root canal treatment[J].Plos one,2017,12(2):1-14.
    [76]JIA R,YANG D,XU D,et al.Mitigation of a nitrate reducing pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine[J].Scientific reports,2017,7(1):1-11.
    [77]王聪,马丹竹,屈洋,等.腐蚀现状与解决理论研究进展[J].当代化工,2015(11):2645-2647.WANG Cong,MA Dan-zhu,QU Yang,et al.Research progress of pipe corrosion situation and corresponding solutions[J].Contemporary chemical industry,2015(11):2645-2647.
    [78]HUANG Y,ZHOU E,JIANG C,et al.Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine pseudomonas aeruginosa[J].Electrochemistry communications,2018,94:9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700