用户名: 密码: 验证码:
养分添加对白桦叶片气孔和气体交换异质性影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of nutrient addition on stomata and gas exchange heterogeneity of Betula platyplylla leaves
  • 作者:刘力铭 ; 孙志虎 ; 李开隆 ; 龚丽芳
  • 英文作者:LIU Liming;SUN Zhihu;LI Kailong;GONG Lifang;College of Forestry,Northeast Forestry University;
  • 关键词:白桦 ; 播种苗 ; 叶片气孔 ; 气体交换 ; 养分添加试验 ; 黑龙江哈尔滨
  • 英文关键词:Betula platyplylla;;sowing seedling;;leaf blade stomata;;gas exchange;;nutrient addition test;;Harbin city;;Heilongjiang province
  • 中文刊名:ZNLB
  • 英文刊名:Journal of Central South University of Forestry & Technology
  • 机构:东北林业大学林学院;
  • 出版日期:2019-01-10 10:08
  • 出版单位:中南林业科技大学学报
  • 年:2019
  • 期:v.39;No.214
  • 基金:国家重点研发计划课题(2017YFD0600603);; 中央高校基本科研业务费专项资金项目(2572014EB03-03);; 国家自然科学基金(31770670,31470714)
  • 语种:中文;
  • 页:ZNLB201904014
  • 页数:7
  • CN:04
  • ISSN:43-1470/S
  • 分类号:78-84
摘要
以白桦Betula platyplylla当年生播种苗为对象,采用L_(25)(5~6)正交试验设计方法,进行了氮(N-尿素;1.965、1.310、0.764、0.655、0.382 g/株)、磷(P-过磷酸钙;0.847、0.564、0.329、0.282、0.164 g/株)、钾(K-硫酸钾;2.281、1.520、0.887、0.760、0.443 g/株)25种配比的养分添加试验。在生长季(8月上旬),在完全展开叶的不同区域(叶尖、叶中、叶基)测得叶片的气孔密度(SD)和净光合速率(P_n)、蒸腾速率(T_r)、气孔导度(G_s),评价白桦叶片不同区域SD和各项气体交换特征对不同养分配比的响应,并分析二者间关系。结果表明:1)白桦叶片的叶尖各项气体交换特征参数虽然明显大于叶中和叶基,但叶片不同区域SD相差不大;2)养分添加对叶片各区域的P_n和G_s均存在显著影响(P<0.05),并对叶中的SD影响显著(P=0.042);3)N、P以及N、P和K的交互作用(NP、NK、PK、NPK)对叶片各区域的P_n均有显著影响(P<0.05),尤以N处理对P_n影响较大;4)除白桦叶基的T_r受P处理影响显著外(P=0.048),其它各种处理对叶片T_r影响均不显著;5)N、P、K处理对叶片各区域G_s影响均不显著,但N、P和K的交互作用(NP、PK)对叶片各区域G_s影响显著(P<0.05);6)虽然N、P和K的交互作用(NP、NK、PK)对叶片各区域SD影响均不显著(P>0.05),但P、K、NPK处理对叶中SD影响均显著(P<0.05);7)白桦叶片各区域P_n与G_s间均呈极显著正相关关系,而SD与前述各项指标间却均呈不显著相关关系,表明白桦叶片不同区域气体交换特征存在差异可能是由于气孔密度以外的因素引起的;8)上述结果也说明进行叶片气体交换特征研究时应考虑同一叶片不同部位间的差异。
        The current year sowing seedlings of Betula platyplylla were used as the tested objects.Adopting the L_(25)(5~6)orthogonal test design method,using nitrogen(N-urea;1.965,1.310,0.764,0.655,0.382 g/plant),phosphorus(P-superphosphate;0.847,0.564,0.329,0.282,0.164 g/plant),potassium(K-potassium sulfate;2.281,1.520,0.887,0.760,0.443 g/plant)and 25 kinds of ratio combinations the nutrient addition tests were carried out.During the growing season(early August),stomatal density(SD)and net photosynthetic rate(P_n),transpiration rate(T_r),stomatal conductance(G_s)were measured in different areas of fully expanded leaves(tip,middle and base).The responses of SD in different areas and gas exchange characteristics to different nutrient distribution ratios of B.platyphylla leaves were evaluated,and the relationship between them was analyzed.The results indicate that:1)The gas exchange characteristic of the leaf tip were significantly larger than that of middle part of leaf and base of leaf,and however,SD values in different regions of leaves were little different;2)Nutrient addition had significant effects on P_n and G_s in all areas of the leaves(P<0.05),and had significant effects on SD in leaves(P=0.042).3)The interactions of N,P and N,P,K(NP,NK,PK,NPK)had significant effects on P_n in all regions of the leaves(P<0.05),especially N treatment had a great influence on P_n.4)Except that the T_r of the birch leaf base was significantly affected by the P treatment(P=0.048),the effects of other treatments on the leaf T_r were not significant.5)The effects of N,P and K treatments on G_s in each leaf region were not significant,but the interactions of N,P and K(NP,PK)had significant effects on G_s in each leaf region(P<0.05).6)Although the interactions of N,P and K(NP,NK,PK)had no significant effect on SD in all regions(P>0.05),P,K and NPK treatments had significant effects on SD in leaves(P<0.05).7)There was a significant positive correlation between P_n and G_s in the leaves of B.platyphylla,but there was no significant correlation between SD and the above indicators;This indicates that the differences in gas exchange characteristics between different regions of B.platyphylla may be caused by factors other than stomatal density.8)These results also indicate that the differences between different parts of the same leaf should be taken into account in the study of gas exchange characteristics of leaves.
引文
[1]HE J,CHEN W,WANG X.Morphological and anatomical features of Quercus section Suber and its adaptation to the ecological environment[J].Acta Phytoecologica Sinica,1994(18):219-227.
    [2]KONRAD W,KATUL G,ROTH-NEBELSICK A,et al.Areduced order model to analytically infer atmospheric CO2,concentration from stomatal and climate data[J].Advances in Water Resources,2017(104):145-157.
    [3]MCELWAIN J C.Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure[J].Geology,2004,32(12):1017-1020.
    [4]HEPWORTH C,DOHENY-ADAMS T,HUNT L,et al.Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake[J].New Phytologist,2015,208(2):336-341.
    [5]STRAIN E,BEARDALL J,THOMSON R,et al.Spatiotemporal variability in the photosynthetic characteristics of Zostera tasmanica,measured by PAM[J].Aquatic Botany,2006,85(1):21-28.
    [6]XIONG D,YU T,LIU X,et al.Heterogeneity of photosynthesis within leaves is associated with alteration of leaf structural features and leaf N content per leaf area in rice[J].Functional Plant Biology,2015(42):687-696.
    [7]XIAO Y,THOLEN D,ZHU X G.The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate:exploration with a new leaf ray tracing model[J].Journal of Experimental Botany,2016,67(21):6021-6035.
    [8]王碧霞,廖咏梅,黄尤优,等.青杨雌雄叶片气孔分布及气体交换的异质性差异[J].植物分类与资源学报,2009,31(5):439-446.
    [9]XU W Z,DENG X P,XU B C.Effects of water stress and fertilization on leaf gas exchange and photosynthetic light-response curves of Bothriochloa ischaemum L[J].Photosynthetica,2013,51(4):603-612.
    [10]郝龙飞,刘婷岩,张连飞,等.氮素指数施肥对白桦播种苗养分承载和光合作用的影响[J].北京林业大学学报,2014,36(6):17-23.
    [11]李海波,李全英,陈温福,等.氮素不同用量对水稻叶片气孔密度及有关生理性状的影响[J].沈阳农业大学学报,2003,34(5):340-343.
    [12]蒋成益,马明东.光照胁迫条件对台湾桤木幼苗的光合生理生态响应[J].中南林业科技大学学报,2017,37(5):7-14.
    [13]周玉梅,杨传平,王淑娟,等.白桦光合特性的研究[J].林业研究(英文版),2002,13(3):209-212.
    [14]徐焕文,刘宇,姜静,等.盐胁迫对白桦光合特性及叶绿素荧光参数的影响[J].西南林业大学学报,2015,35(4):21-26.
    [15]刘力武,孙志虎,刘彤.基肥对白桦(Betula platyphylla)幼苗生长影响的研究[J].森林工程,2017,33(1):1-6.
    [16]WENG X Y,HONG-XIA X U,JIANG D A.Characteristics of Gas Exchange,Chlorophyll Fluorescence and Expression of Key Enzymes in Photosynthesis During Leaf Senescence in Rice Plants[J].植物学报:英文版,2005,47(5):560-566.
    [17]郑凤英,彭少麟.不同尺度上植物叶气孔导度对升高CO2的响应[J].生态学杂志,2003,22(1):26-30.
    [18]王春枝,于小静,齐宝利,等.施肥对南果梨叶片叶绿素含量及光合特性的影响[J].北方园艺,2012(14):150-153.
    [19]廖克波,潘启龙,黄松殿,等.氮磷钾配比对油楠幼苗光合生理特性的影响[J].南方农业学报,2013,44(4):611-615.
    [20]MARICLE B R,KOTEYEVA N K,VOZNESENSKAYA EV,et al.Diversity in leaf anatomy,and stomatal distribution and conductance,between salt marsh and freshwater species in the C4 genus Spartina(Poaceae)[J].New Phytologist,2009,184(1):216-233.
    [21]POOLE I,LAWSON T,WEYERS J D B,et al.Effect of elevated CO2 on the stomatal distribution and leaf physiology of Alnus glutinosa[J].New Phytologist,2000,145(3):511-521.
    [22]POOLE I,WEYERS J D B,LAWSON T,et al.Variations in stomatal density and index-implications for palaeoclimatic reconstructions[J].Plant Cell&Environment,1996,19(6):705-712.
    [23]GAILING O,LANGENFELD-HEYSER R,POLLE A,et al.Quantitative trait loci affecting stomatal density and growth in a Quercus robur,progeny:implications for the adaptation to changing environments[J].Global Change Biology,2008,14(8):1934-1946.
    [24]OJANGUREN C T,GOULDEN M L.Photosynthetic acclimation within individual Typha latifolia,leaf segments[J].Aquatic Botany,2013,111(111):54-61.
    [25]LAKE J A,QUICK W P,BEERLING D J,et al.Plant development.Signals from mature to new leaves[J].Nature,2001,411(6834):154.
    [26]MEDRANO H,ESCALONA J M,BOTA J,et al.Regulation of photosynthesis of C3 plants in response to progressive drought:stomatal conductance as a reference parameter[J].Ann Bot,2002,89(7):895-905.
    [27]BRUGNOLI E,BJ?RKMAN O.Growth of cotton under continuous salinity stress:influence on allocation pattern,stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy.[J].Planta,1992,187(3):335-347.
    [28]NARDINI A,GORTAN E,RAMANI M,et al.Heterogeneity of gas exchange rates over the leaf surface in tobacco:an effect of hydraulic architecture?[J].Plant Cell&Environment,2008,31(6):804.
    [29]MARKOU G,DAO L H T,MUYLAERT K,et al.Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris[J].Algal Research,2017(26):84-92.
    [30]MEHTA P,KRASLAVSKY V,BHARTI S,et al.Analysis of salt stress induced changes in Photosystem II heterogeneity by prompt fluorescence and delayed fluorescence in wheat(Triticum aestivum)leaves.[J].Journal of Photochemistry&Photobiology B Biology,2011,104(1):308-313.
    [31]MATHUR S,ALLAKHVERDIEV S I,JAJOO A.Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves(Triticum aestivum)[J].Biochimica Et Biophysica Acta,2011,1807(1):22.
    [32]XU X,LI Y,WANG B,et al.Salt stress induced sex-related spatial heterogeneity of gas exchange rates over the leaf surface in Populus cathayana,Rehd[J].Acta Physiologiae Plantarum,2015,37(1):1709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700