用户名: 密码: 验证码:
山区单悬臂廊桥结构抖振响应及等效风荷载
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Buffeting Response and Equivalent Wind Load of Single Cantilever Corridor Bridge in Mountainous Areas
  • 作者:苏益 ; 李明水 ; 杨阳 ; 段青松
  • 英文作者:SU Yi;LI Mingshui;YANG Yang;DUAN Qingsong;School of Civil Engineering,Southwest Jiaotong University;Wind Engineering Key Laboratory of Sichuan Province,Southwest Jiaotong University;
  • 关键词:山区风环境 ; 三分力系数 ; 抖振响应 ; 等效风荷载 ; 悬挑结构 ; 风洞试验
  • 英文关键词:wind environment in mountainous areas;;aerostatic force coefficient;;buffeting response;;equivalent wind load;;cantilevered structure;;wind tunnel test
  • 中文刊名:XNJT
  • 英文刊名:Journal of Southwest Jiaotong University
  • 机构:西南交通大学土木工程学院;西南交通大学风工程四川省重点实验室;
  • 出版日期:2018-12-22 07:00
  • 出版单位:西南交通大学学报
  • 年:2019
  • 期:v.54;No.245
  • 基金:国家自然科学基金资助项目(51478402)
  • 语种:中文;
  • 页:XNJT201901016
  • 页数:8
  • CN:01
  • ISSN:51-1277/U
  • 分类号:125-132
摘要
为研究山区风环境下悬挑式人行桥梁抖振响应及风荷载,以某单悬臂观景廊桥为背景,通过风洞试验对结构的静力三分力系数以及不同风参数下的抖振响应进行了测量,并将结构横桥向最大等效风荷载规范计算值与试验值进行比较.结果表明:山体地形对结构三分力系数及抖振响应影响较大,二者最大值均未出现在常规风向角;结构抖振响应随风速的增大而增大,受小幅风攻角的影响较小;横向抖振响应受一定程度紊流度变化的影响不敏感,但竖向及扭转响应整体随紊流度的增加呈明显增大趋势,在紊流度增大约40%的情况下二者均增大15%左右;竖向抖振响应随紊流积分尺度的增大(增幅约20%)而增大,增幅在9%左右,但积分尺度对横向抖振响应几乎无影响,对扭转响应的影响随风攻角的不同有较大差异,随着积分尺度的增大,3°攻角下扭转响应增幅约为8%,0°攻角其受积分尺度的变化影响较小;相比横桥向最大等效风荷载试验值,利用桥梁规范计算的结果偏于保守,静阵风系数的取值有待修正.
        In order to study the buffeting response and the wind loading of a cantilevered pedestrian bridge in windy mountainous,a corridor bridge model was put in a wind tunnel to obtain its aerostatic force coefficients and buffeting responses. The maximum equivalent wind load in the transverse direction was calculated according to the bridges structural code and compared to the experimental results. The complex mountainous terrain has a significant influence on the structural aerostatic force coefficients and the buffeting responses,although neither of their maximums arises due to the general wind yaw. The structural buffeting responses increase with higher wind speeds, while are affected little by the wind attack angles in a small range. The lateral buffeting response is neither sensitive to turbulence intensity nor the turbulence integral scale. The vertical and torsional responses show an uptrend with increasing turbulence intensity, and both increase by around 15% when the turbulence intensity increases by around 40%. The vertical responses increase by about 9% if the turbulence integral scale increases by about 20%,while the lateral responses are affected little by a change in integral scale. In spite of the small influence of the turbulence integral scales on the lateral responses,the torsional responses vary greatly at different wind attack angles. At an attack angle of 3°,the torsional responses increase by around 8% with the increased integral scale, but they are influenced little by the change in integral scale at a 0° attack angle.Compared with the lateral wind loading found in the wind tunnel,the maximum equivalent calculated from the bridges structural code seems too conservative,and hence the code's static gust factor should be further investigated.
引文
[1]XIE J,HUNTER M,IRWIN P.Experimental and analytical approaches in wind engineering studies for bridges[R].Budapest:Responding to Tomorrow’s Challenges in Structural Engineering,2006.
    [2]项海帆.进入21世纪的桥梁风工程研究[J].同济大学学报(自然科学版),2002,30(5):529-532.XIANG Haifan.Study on bridge wind engineering into21st century[J].Journal of Tongji University(Natural Science),2002,30(5):529-532.
    [3]叶征伟.山区高墩大跨连续刚构桥风环境及风荷载研究[D].杭州:浙江大学,2012.
    [4]KOSSMANN M,V?GTLIN R,CORSMEIER U,et al.Aspects of the convective boundary layer structure over complex terrain[J].Atmospheric Environment,1998,32(7):1323-1348.
    [5]于舰涵,李明水,廖海黎.山区地形对桥位风场影响的数值模拟[J].西南交通大学学报,2016,51(4):654-662.YU Jianhan,LI Mingshui,LIAO Haili.Numerical simulation of effect of mountainous topography on wind field at bridge site[J].Journal of Southwest Jiaotong University,2016,51(4):654-662.
    [6]王凯,廖海黎,李明水,等.山区峡谷桥梁设计基准风速的确定方法[J].西南交通大学学报,2013,48(1):29-35.WANG Kai,LIAO Haili,LI Mingshui,et al.Determination method for basic design wind speed of mountainous-valley bridge[J].Journal of Southwest Jiaotong University,2013,48(1):29-35.
    [7]徐洪涛.山区峡谷风特性参数及大跨度桁梁桥风致振动研究[D].成都:西南交通大学,2009.
    [8]U.S.Department of Commerce,National Bureau of Standards.Turbulent wind effects on tension leg platform surge[S].Washington D C:Government Printing Office,1983.
    [9]中交公路规划设计院.公路桥梁抗风设计规范:JTG/TD60-01-2004[S].北京:人民交通出版社,2004.
    [10]KIMURA K,TANAKA H.Bridge buffeting due to wind with yaw angles[J].Journal of Wind Engineering&Industrial Aerodynamics,1992,42(1/2/3):1309-1320.
    [11]ZHU L D,XU Y L.Buffeting response of long-span cable-supported bridges under skew winds,part 1:theory[J].Journal of Sound&Vibration,2005,281(3/4/5):647-673.
    [12]BARNARD R H.Wind loads on cantilevered roof structures[J].Journal of Wind Engineering&Industrial Aerodynamics,1981,8(1):21-30.
    [13]王浩,李爱群,焦常科,等.桥塔风效应对大跨度悬索桥抖振响应的影响[J].振动与冲击,2010,29(8):103-106.WANG Hao,LI Aiqun,JIAO Changke,et al.Bridge tower wind effects on buffeting response of long-span suspension bridges[J].Journal of Vibration and Shock,2010,29(8):103-106.
    [14]庞加斌,葛耀君,陆烨.大气边界层湍流积分尺度的分析方法[J].同济大学学报(自然科学版),2002,30(5):529-532.PANG Jiabin,GE Yaojun,LU Ye.Methods for analysis of turbulence integral length in atmospheric boundary-layer[J].Journal of Tongji University(Natural science),2002,30(5):529-532.
    [15]公路桥梁抗风设计指南编写组.公路桥梁抗风设计指南[M].北京:人民交通出版社,1996:24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700