用户名: 密码: 验证码:
基于开尔文探针力显微镜的纳米复合材料次表面成像分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of KPFM-Based Subsurface Imaging of Nanocomposites
  • 作者:熊晓洋 ; 陈宇航
  • 英文作者:Xiong Xiaoyang;Chen Yuhang;School of Engineering Science,University of Science and Technology of China;
  • 关键词:开尔文探针力显微镜 ; 纳米复合材料 ; 次表面成像 ; 静电作用模型
  • 英文关键词:Kelvin probe force microscopy;;nanocomposite;;subsurface imaging;;electrostatic interaction model
  • 中文刊名:NMJM
  • 英文刊名:Nanotechnology and Precision Engineering
  • 机构:中国科学技术大学工程科学学院;
  • 出版日期:2016-11-15
  • 出版单位:纳米技术与精密工程
  • 年:2016
  • 期:v.14;No.71
  • 基金:国家自然科学基金资助项目(51275503)
  • 语种:中文;
  • 页:NMJM201606001
  • 页数:8
  • CN:06
  • ISSN:12-1351/O3
  • 分类号:12-19
摘要
针对聚合物纳米复合材料次表面结构高分辨无损检测的需求,应用开尔文探针力显微镜(KPFM)对聚合物中导电填充物进行次表面纳米成像.首先,建立探针-纳米颗粒-基质体系的静电相互作用理论模型,分析聚合物中金属颗粒检测的成像机理;其次,通过有限元软件模拟并结合理论模型,系统研究针尖与样品间距、针尖半径等因素的影响;最后,制作聚合物和碳纳米管复合材料样品并进行基于KPFM的内部碳纳米管成像实验验证.结果表明:当针尖半径大约为1.5倍颗粒直径、间距较小时,成像效果较好;相较而言,探针锥角对成像结果影响不显著;KPFM对相对介电常数在3~10之间、颗粒直径越大、掩埋深度越小的内部纳米颗粒成像效果越好.
        Subsurface imaging,performed with Kelvin probe force microscopy( KPFM),was investigated to identify conductive fillers embedded in polymer aiming to satisfy the need of high-resolution imaging of nanocomposites without damage. In this paper a theoretical model,describing the electrostatic interaction in the tip-particle-matrix system,was proposed to analyze the mechanism. Parameters such as tip-sample distance,radius of tip,and so forth were studied systematically by using finite element analysis( FEA)and theoretical model. Experiment validation was performed on a polyimide nanocomposite with carbon nanotubes buried inside. The results show that to obtain better subsurface images,a tip with a radius 1. 5times greater than the particle's and a small tip-sample distance are preferred. Comparatively,the cone angle of the tip exerts less effect on electrostatic forces. Subsurface imaging on samples with relative dielectric constants in the range of 3—10,large particle radius and small buried depth is much easier.
引文
[1]Landi B J,Raffaelle R P,Castro S L,et al.Single-wall carbon nanotube-polymer solar cells[J].Prog Photovoltaics Res Appl,2005,13(2):165-172.
    [2]Peng C,Zhang S,Jewell D,et al.Carbon nanotube and conducting polymer composites for supercapacitors[J].Prog Nat Sci,2008,18(7):777-799.
    [3]Li L,Hu W,Chang C,et al.Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowirepolymer composite electrode[J].Adv Mater,2011,23(46):5563-5567.
    [4]Young R J,Kinloch I A,Gong L,et al.The mechanics of graphene nanocomposites:A review[J].Compos Sci Techn-ol,2012,72(12):1459-1476.
    [5]Maensiri S,Laokul P,Klinkaewnarong J,et al.Carbon nanofiber-reinforced alumina nanocomposites:Fabrication and mechanical properties[J].Mater Sci Eng,2007,447(1/2):44-50.
    [6]Rodríguez-Tobías H,Morales G,Rodríguez-Fernández O,et al.Effect of zinc oxide nanoparticles concentration on the mechanical properties and UV protection of in situ synthesized ABS based nanocomposites[J].Macromol Symp,2013,325/326(1):147-155.
    [7]Kimura K,Kobayashi K,Matsushige K,et al.Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques[J].Ultramicroscopy,2013,133:41-49.
    [8]Zhou X,Fu J,Li Y,et al.Nanomechanical mapping of glass fiber reinforced polymer composites using atomic force acoustic microscopy[J].J Appl Polym Sci,2014,131(2):39800-1-10.
    [9]Kolosov O V,Dinelli F,Henini M,et al.Seeing the invisible-ultrasonic force microscopy for true subsurface elastic imaging of semiconductor nanostructures with nanoscale resolution[C]//Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo,NSTI-Nanotech 2012.Santa Clara,CA,USA,2012:24-26.
    [10]Bernardi E,Battiato A,Olivero P,et al.Kelvin probe characterization of buried graphitic microchannels in single-crystal diamond[J].J Appl Phys,2015,117(2):024103.
    [11]Castaeda-Uribe O A,Reifenberger R,Raman A,et al.Depth-sensitive subsurface imaging of polymer nanocomposites using second harmonic Kelvin probe force microscopy[J].ACS Nano,2015,9(3):2938-2947.
    [12]Cadena M J,Misiego R,Smith K C,et al.Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods[J].Nanotechnology,2013,24(13):135706.
    [13]Killgore J P,Kelly J Y,Stafford C M,et al.Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites[J].Nanotechnology,2011,22(17):175706.
    [14]Jespersen T,Nygard J.Mapping of individual carbon nanotubes in polymer/nanotube composites using electrostatic force microscopy[J].Appl Phys Lett,2007,90(18):183108.
    [15]Nonnenmacher M,O’Boyle M P,Wickramasinghe H K.Kelvin probe force microscopy[J].Applied Physics Letters,1991,58(25):2921-2923.
    [16]Melitz W,Shen J,Kummel A C,et al.Kelvin probe force microscopy and its application[J].Surface Science Reports,2011,66(1):1-27.
    [17]Glatzel T,Sadewasser S,Lux-Steiner M C.Amplitude or frequency modulation-detection in Kelvin probe force microscopy[J].Applied Surface Science,2003,210(1):84-89.
    [18]Hudlet J S,Guthmann C,Berger J,et al.Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface[J].The European Physical Journal B,1998,2(1):5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700