用户名: 密码: 验证码:
Graphene/MoS_2异质结的能带结构研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on band structure of Graphene/MoS_2 heterostructures
  • 作者:申高亮 ; 田楠 ; 陈永锋 ; 刘北云 ; 李松宇 ; 严辉 ; 刘丹敏 ; 张永哲
  • 英文作者:SHEN Gao-liang;TIAN Nan;CHEN Yong-feng;LIU Bei-yun;LI Song-yu;YAN Hui;LIU Dan-min;ZHANG Yong-zhe;College of Materials Science and Engineering,Beijing University of Technology;Institute of Microstructure and Property of Advanced Material,Beijing University of Technology;School of Physics and Nuclear Energy Engineering,Beihang University;
  • 关键词:石墨烯 ; 硫化钼 ; 二维材料 ; 异质结 ; 能带
  • 英文关键词:graphene;;MoS_2;;two-dimensional materials;;heterostructure;;band structure
  • 中文刊名:DZXV
  • 英文刊名:Journal of Chinese Electron Microscopy Society
  • 机构:北京工业大学材料科学与工程学院;北京工业大学固体微结构与性能研究所;北京航空航天大学物理科学与核能工程学院;
  • 出版日期:2018-12-15
  • 出版单位:电子显微学报
  • 年:2018
  • 期:v.37;No.200
  • 基金:国家自然科学基金面上资助项目(No.61575010)
  • 语种:中文;
  • 页:DZXV201806006
  • 页数:7
  • CN:06
  • ISSN:11-2295/TN
  • 分类号:39-45
摘要
石墨烯具有优异的光学和电学性质,同时其与其它二维材料形成的异质结在改善接触,能带调控等方面展现出了应用前景。然而,该类异质结结构中能带特性一直缺乏直接的研究分析,本文中以Graphene/MoS_2异质结为研究对象,通过开尔文探针力显微镜原位分析了其能带结构。结果发现:在二维Graphene/MoS_2异质结中,石墨烯的功函数比硫化钼的功函数小,Graphene/MoS_2异质结具有有利于接触的能带结构,可以解释在类似的二维材料异质结电输运实验中,观察到较低的肖特基势垒;退火后,Graphene/MoS_2异质结之间的肖特基势垒高度进一步减小。本课题组的研究显示出石墨烯在改善二维材料相关器件电学性能方面有很大的潜力。
        Graphene has shown great potential application in broad fields due to its optical and electrical properties. Especially, it exhibits excellent performance in the electrical contact improving and band structure engineering when the graphene is formed heterojunction with other two-dimensional materials. However, the band structure characteristics in the graphene based heterojunctions structure have always been lack of direct evidence. Here the Graphene/MoS_2 heterostructure was investigated and its band structure was in-situ analyzed by Kelvin probe force microscop(KPFM). It is found that, the work function of graphene is smaller than that of the MoS_2 in the heterostructure, which benefits for the decrease of Schottky barrier. After thermal treatment process, the Schottky barrier height between the graphene and MoS_2 is further reduced. Our research shows that the graphene has great potential to improve the electrical performances of two-dimensional material related devices.
引文
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    [2] HUANG P Y, RUIZ-VARGAS C S, Van der ZANDE A M, et al. Grains and grain boundaries in single-layer graphene atomic patch work quilts[J]. Nature, 2011, 469(7330): 389-392.
    [3] 田甜, 田楠, 汪涛,等. 化学原位还原法制备石墨烯-铜纳米颗粒复合物[J]. 电子显微学报, 2016, 35(5):404-408.
    [4] ZHANG B Y, LIU T, MENG B, et al. Broadband high photoresponse from pure monolayer graphene-photodetector[J]. Nature Communications, 2013, 4(6):1811.
    [5] SUN D, AIVAZIAN G, JONES A M, et al. Ultrafast hot-carrier dominated photocurrent in graphene[J].Nature Nanotechnology, 2012, 7(2): 114-118.
    [6] 王元斐, 陈友虎, 唐捷, 等. 双片二硫化钼纳米薄片的电子衍射分析[J]. 电子显微学报,2018,37(1): 20-25.
    [7] BRNARDI M, PALUMMO M, GROSSMAN J C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials[J]. Nano Letters, 2013, 13(8):3664-3670.
    [8] BORZDA T, GADERMAIER C, VUJICIC N, et al. Charge photogeneration in few‐layer MoS2[J]. Advanced Functional Materials, 2015, 25(22):3351-3358.
    [9] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4):1271-1275.
    [10] LOW T, RODIN A S, CARVALHO A, et al. Tunable optical properties of multilayers black phosphorus thin films[J]. Physical Review B, 2014, 90(7):075434.
    [11] XIA F, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12):899-907.
    [12] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3):147-150.
    [13] LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7):497-501.
    [14] WITHERS F, POZOZAMUDIO O D, MISHCHENKO A, et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nature Materials, 2015, 14(3):301-306.
    [15] ZHANG Y J, OKA T, SUZUKI R, et al. Electrically switchable chiral light-emitting transistor.[J]. Science, 2014, 344(6185):725-728.
    [16] WU S, BUCKLEY S, SCHAIBLEY J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 2015, 520(7545):69-72.
    [17] SARKAR D, LIU W, XIE X, et al. MoS2 field-effect transistor for next-generation label-free biosensors[J]. ACS Nano, 2014, 8(4):3992-4003.
    [18] YANG X, CHENG C, DU S, et al. Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p-n heterojunctions[J]. ACS Nano, 2016, 10(5):4895-4919.
    [19] LEMME M C, KOPPENS F H L, FALK A L, et al. Gate-activated photoresponse in a graphene p-n junction[J]. Nano Letters, 2011, 11(10):4134-4137.
    [20] ZHANG W, CHUU C P, HUANG J K, et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures[J]. Sci Rep, 2014, 4(7484):3826.
    [21] LI X, WU J, MAO N, et al. A self-powered graphene-MoS2, hybrid phototransistor with fast response rate and high on-off ratio[J]. Carbon, 2015, 92:126-132.
    [22] AN X, LIU F, JUNG Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 2013, 13(3):909-916.
    [23] WANG G, ZHANG Y, YOU C, et al. Two dimensional materials based photodetectors[J]. Infrared Physics & Technology, 2017, 88:149-173.
    [24] LIU Y, WU H, CHENG H C, et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes[J]. Nano Letters, 2015, 15(5):3030-3034.
    [25] LEE Y T, CHOI K, LEE H S, et al. Graphene versus ohmic metal as source-drain electrode for MoS2 nanosheet transistor channel[J]. Small, 2014, 10(12): 2356-2361.
    [26] QIU D, KIM E K. Electrically tunable and negative Schottky barriers in multi-layered graphene/MoS2 heterostructured transistors[J]. Scientific Reports, 2015, 5: 13743.
    [27] ZHAO M, YE Y, HAN Y, et al. Large-scale chemical assembly of atomically thin transistors and circuits[J]. Nature Nanotechnology, 2016, 11(11):954-959.
    [28] CUI X, LEE G H, KIM Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[J]. Nature Nanotechnology, 2015, 10(6):534-540.
    [29] XIE L, LIAO M, WANG S, et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors[J]. Advanced Materials, 2017, 29(37):1702522.
    [30] TIAN H, TAN Z, WU C, et al. Novel field-effect Schottky barrier transistors based on graphene-MoS2 heterojunctions[J]. Scientific Reports, 2014, 4:5951.
    [31] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):187401.
    [32] LI H, ZHANG Q, YAP C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering[J]. Advanced Functional Materials, 2012, 22(7):1385-1390.
    [33] EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12):5111-5116.
    [34] ZHENG C, ZHANG Q, WEBER B, et al. Direct observation of 2D electrostatics and ohmic contacts in template-grown Graphene/WS2 heterostructures[J]. ACS Nano, 2017, 11(3):2785-2793.
    [35] YU Y J, ZHAO Y, RYU S, et al. Tuning the graphene work function by electric field effect[J]. Nano Letters, 2009, 9(10):3430-3434.
    [36] ANDLEEB S, EOM J, NAZ N R, et al. MoS2 field-effect transistor with graphene contacts[J]. Journal of Materials Chemistry C, 2017, 5(32):8308-8314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700