用户名: 密码: 验证码:
聚合物太阳能电池的电特性扫描探针显微技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nanoscale structure and electrical properties of polymer solar cells studied by electric scanning probe microscopy
  • 作者:李灯华 ; 李超 ; 杨延莲 ; 刘漫红 ; 王琛
  • 英文作者:LI DengHua 1 , LI Chao 1,2 , YANG YanLian 1 , LIU ManHong 1,2 & WANG Chen 1 1 National Center for Nanoscience and Technology, Beijing 100190, China; 2 College of Materials Science and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
  • 关键词:聚合物太阳能电池 ; 有机太阳能电池 ; 静电力显微技术 ; 导电原子力显微技术 ; 开尔文探针力 ; 显微技术
  • 英文关键词:polymer solar cell, organic photovoltaic, electric force microscopy, conductive atomic force microscopy, Kelvin probe force microscopy
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:国家纳米科学中心;青岛科技大学材料科学与工程学院;
  • 出版日期:2013-08-30
  • 出版单位:科学通报
  • 年:2013
  • 期:v.58
  • 基金:国家自然科学基金(20973043,21077062);; 科技部中英合作项目(2010DFA64680);; 山东省自然科学基金(ZR2012FZ007)资助
  • 语种:中文;
  • 页:KXTB201324009
  • 页数:13
  • CN:24
  • ISSN:11-1784/N
  • 分类号:52-64
摘要
聚合物太阳能电池(polymer solar cells,PSC)因其柔性、易加工性等特点成为目前新能源领域研究的热点之一.扫描探针显微技术(scanning probe microscopy,SPM)在高分辨形貌表征和电特性表征方面具有独特优势,近年来在PSC研究领域的应用逐渐受到广泛关注.本文综述了近年来利用SPM技术在纳米尺度研究PSC活化层的形貌、相分离、电荷分离、电势分布等的新进展,分别介绍静电力显微技术(electric force microscopy,EFM)、导电原子力显微技术(conductive atomic force microscopy,C-AFM)、开尔文探针力显微技术(Kelvin probe force microscopy,KPFM)等在PSC活化层的结构和局域电学特性表征中的应用,并对电特性扫描探针显微技术(electric SPM,ESPM)在PSC及其他具有光电特性的薄膜、器件等研究领域的应用前景进行了展望.
        Polymer solar cell (PSC) has drawn much attention in the energy field for its flexibility and processability. Scanning probe microscopy (SPM) is a powerful tool in characterizing morphology and electrical property at high special resolution, and has been attracting broad interest in this field. In this paper, we summarized the recent progress in applications of electric SPM (ESPM) in PSC investigations, including the nanoscale morphology, phase separation, charge separation and potential distribution. We introduce the principles of the ESPM techniques first, including electric force microscopy (EFM), conductive atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM), and then discuss their concrete applications in characterizing the local structural and electric properties of PSC film. A perspective is also discussed on the future applications of ESPM in PSC and other related opto-electric films and devices.
引文
1Brabec C J,Gowrisanker S,Halls J J M,et al.Polymer-fullerene bulk-heterojunction solar cells.Adv Mater,2010,22:3839–3856
    2Siddiki M K,Li J,Galipeau D,et al.A review of polymer multijunction solar cells.Energ Environ Sci,2010,3:867–883
    3Yu G,Gao J,Hummelen J C,et al.Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions.Science,1995,270:1789–1791
    4Sariciftci N S,Smilowitz L,Heeger A J,et al.Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene.Science,1992,258:1474–1476
    5Hou J H,Chen H Y,Zhang S Q,et al.Synthesis,characterization,and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and2,1,3-benzothiadiazole.J Am Chem Soc,2008,130:16144–16145
    6Li G,Shrotriya V,Huang J S,et al.High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends.Nat Mater,2005,4:864–868
    7Wong W Y,Wang X Z,He Z,et al.On the efficiency of polymer solar cells.Nat Mater,2007,6:704–705
    8Peet J,Kim J Y,Coates N E,et al.Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols.Nat Mater,2007,6:497–500
    9Liang Y Y,Feng D Q,Wu Y,et al.Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties.J Am Chem Soc,2009,131:7792–7799
    10Chen H Y,Hou J H,Zhang S Q,et al.Polymer solar cells with enhanced open-circuit voltage and efficiency.Nat Photon,2009,3:649–653
    11Liang Y Y,Xu Z,Xia J B,et al.For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of7.4%.Adv Mater,2010,22:E135–E138
    12Kim J Y,Lee K,Coates N E,et al.Efficient tandem polymer solar cells fabricated by all-solution processing.Science,2007,317:222–225
    13Park S H,Roy A,Beaupre S,et al.Bulk heterojunction solar cells with internal quantum efficiency approaching100%.Nat Photon,2009,3:297–303
    14He Z C,Zhong C M,Huang X,et al.Simultaneous enhancement of open-circuit voltage,short-circuit current density,and fill factor in polymer solar cells.Adv Mater,2011,23:4636–4643
    15Park J H,Kim J S,Lee J H,et al.Effect of annealing solvent solubility on the performance of poly(3-hexylthiophene)/methanofullerene solar cells.J Phys Chem C,2009,113:17579–17584
    16Padinger F,Rittberger R S,Sariciftci N S.Effects of postproduction treatment on plastic solar cells.Adv Funct Mater,2003,13:85–88
    17Yang F,Shtein M,Forrest S R.Morphology control and material mixing by high-temperature organic vapor-phase deposition and its application to thin-film solar cells.J Appl Phys,2005,98:014906
    18Yang X N,van Duren J K J,Janssen R A J,et al.Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices.Macromolecules,2004,37:2151–2158
    19Huang J S,Li G,Yang Y.Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene)and[6,6]-phenyl c-61-butyric acid methyl ester blends.Appl Phys Lett,2005,87:112105
    20Ma W L,Yang C Y,Gong X,et al.Thermally stable,efficient polymer solar cells with nanoscale control of the interpenetrating network morphology.Adv Funct Mater,2005,15:1617–1622
    21Woo C H,Thompson B C,Kim B J,et al.The influence of poly(3-hexylthiophene)regioregularity on fullerene-composite solar cell performance.J Am Chem Soc,2008,130:16324–16329
    22Watts B,Belcher W J,Thomsen L,et al.A quantitative study of pcbm diffusion during annealing of P3HT:PCBM blend films.Macromolecules,2009,42:8392–8397
    23Li G,Yao Y,Yang H,et al.“Solvent annealing”effect in polymer solar cells based on poly(3-hexylthiophene)and methanofullerenes.Adv Funct Mater,2007,17:1636–1644
    24Yang H H,LeFevre S W,Ryu C Y,et al.Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene)using volatile solvents.Appl Phys Lett,2007,90:172116
    25Ho P K H,Chua L L,Dipankar M,et al.Solvent effects on chain orientation and interchain pi-interaction in conjugated polymer thin films:Direct measurements of the air and substrate interfaces by near-edge X-ray absorption spectroscopy.Adv Mater,2007,19:215–221
    26Yang X N,Loos J,Veenstra S C,et al.Nanoscale morphology of high-performance polymer solar cells.Nano Lett,2005,5:579–583
    27Oosterhout S D,Wienk M M,van Bavel S S,et al.The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells.Nat Mater,2009,8:818–824
    28van Bavel S S,Sourty E,de With G,et al.Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells.Nano Lett,2009,9:507–513
    29van Bavel S S,Sourty E,de With G,et al.Relation between photoactive layer thickness,3D morphology,and device performance in P3HT/PCBM bulk-heterojunction solar cells.Macromolecules,2009,42:7396–7403
    30Yang X,Loos J.Toward high-performance polymer solar cells:The importance of morphology control.Macromolecules,2007,40:1353–1362
    31Andersson B V,Herland A,Masich S,et al.Imaging of the3D nanostructure of a polymer solar cell by electron tomography.Nano Lett,2009,9:853–855
    32Ikeda S,Shimada T,Kiguchi M,et al.Visualization of induced charge in an organic thin-film transistor by cross-sectional potential mapping.J Appl Phys,2007,101:94509–94700
    33Tal O,Rosenwaks Y,Roichman Y,et al.Threshold voltage as a measure of molecular level shift in organic thin-film transistors.Appl Phys Lett,2006,88:043509
    34Puntambekar K P,Pesavento P V,Frisbie C D.Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by kelvin probe force microscopy.Appl Phys Lett,2003,83:5539–5541
    35Jaquith M,Muller E M,Marohn J A.Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene.J Phys Chem B,2007,111:7711–7714
    36Muller E M,Marohn J A.Microscopic evidence for spatially inhomogeneous charge trapping in pentacene.Adv Mater,2005,17:1410–1414
    37Kemerink M,Timpanaro S,de Kok M M,et al.Three-dimensional inhomogeneities in PEDOT:PSS films.J Phys Chem B,2004,108:18820–18825
    38Nardes A M,Kemerink M,Janssen R A J,et al.Microscopic understanding of the anisotropic conductivity of PEDOT:PSS thin films.Adv Mater,2007,19:1196–1200
    39Ionescu-Zanetti C,Mechler A,Carter S A,et al.Semiconductive polymer blends:Correlating structure with transport properties at the nanoscale.Adv Mater,2004,16:385–389
    40Pingree L S C,MacLeod B A,Ginger D S.The changing face of PEDOT:PSS films:Substrate,bias,and processing effects on vertical charge transport.J Phys Chem C,2008,112:7922–7927
    41O’Neil K D,Shaw B,Semenikhin O A.On the origin of mesoscopic inhomogeneity of conducting polymers.J Phys Chem B,2007,111:9253–9269
    42Lee H J,Park S M.Electrochemistry of conductive polymers.30.Nanoscale measurements of doping distributions and current-voltage characteristics of electrochemically deposited polypyrrole films.J Phys Chem B,2004,108:1590–1595
    43Lin H N,Lin H L,Wang S S,et al.Nanoscale charge transport in an electroluminescent polymer investigated by conducting atomic force microscopy.Appl Phys Lett,2002,81:2572–2574
    44Heo J S,Bockrath M.Local electronic structure of single-walled carbon nanotubes from electrostatic force microscopy.Nano Lett,2005,5:853–857
    45Martin Y,Abraham D W,Wickramasinghe H K.High-resolution capacitance measurement and potentiometry by force microscopy.Appl Phys Lett,1988,52:1103–1105
    46Cherniavskaya O,Chen L W,Weng V,et al.Quantitative noncontact electrostatic force imaging of nanocrystal polarizability.J Phys Chem B,2003,107:1525–1531
    47Gordon M J,Baron T.Amplitude-mode electrostatic force microscopy in UHV:Quantification of nanocrystal charge storage.Phys Rev B,2005,72:165420
    48Garcia R,Perez R.Dynamic atomic force microscopy methods.Surf Sci Rep,2002,47:197–301
    49Staii C,Johnson A T,Pinto N J.Quantitative analysis of scanning conductance microscopy.Nano Lett,2004,4:859–862
    50Takano H,Wong S S,Harnisch J A,et al.Mapping the subsurface composition of organic films by electric force microscopy.Langmuir,2000,16:5231–5233
    51Takano H,Porter M D.Monitoring chemical transformations at buried organic interfaces by electric force microscopy.J Am Chem Soc,2001,123:8412–8413
    52Kader M A,Choi D,Lee S K,et al.Morphology of conducting filler-reinforced nitrile rubber composites by electrostatic force microscopy.Polym Test,2005,24:363–366
    53Jespersen T S,Nygard J.Mapping of individual carbon nanotubes in polymer/nanotube composites using electrostatic force microscopy.Appl Phys Lett,2007,90:183108
    54Yongsunthon R,Rous P J,Stanishevsky A,et al.Phase imaging of buried structures.Appl Surf Sci,2003,210:6–11
    55Yan H,Li D H,Li C,et al.Bridging mesoscopic blend structure and property to macroscopic device performance via in situ optoelectronic characterization.J Mater Chem,2012,22:4349–4355
    56Coffey D C,Ginger D S.Time-resolved electrostatic force microscopy of polymer solar cells.Nat Mater,2006,5:735–740
    57Snaith H J,Arias A C,Morteani A C,et al.Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices.Nano Lett,2002,2:1353–1357
    58McNeill C R,Frohne H,Holdsworth J L,et al.Near-field scanning photocurrent measurements of polyfluorene blend devices:Directly correlating morphology with current generation.Nano Lett,2004,4:2503–2507
    59Melitz W,Shen J,Kummel A C,et al.Kelvin probe force microscopy and its application.Surf Sci Rep,2011,66:1–27
    60Chiesa M,Burgi L,Kim J S,et al.Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes.Nano Lett,2005,5:559–563
    61Hoppe H,Glatzel T,Niggemann M,et al.Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells.Nano Lett,2005,5:269–274
    62Palermo V,Ridolfi G,Talarico A M,et al.A kelvin probe force microscopy study of the photogeneration of surface charges in all-thiophene photovoltaic blends.Adv Funct Mater,2007,17:472–478
    63Spadafora E J,Demadrille R,Ratier B,et al.Imaging the carrier photogeneration in nanoscale phase segregated organic heterojunctions by kelvin probe force microscopy.Nano Lett,2010,10:3337–3342
    64Pingree L S C,Hersam M C,Kern M M,et al.Spatially-resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy.Appl Phys Lett,2004,85:344–346
    65Hersam M C,Hoole A C F,O’Shea S J,et al.Potentiometry and repair of electrically stressed nanowires using atomic force microscopy.Appl Phys Lett,1998,72:915–917
    66Paul S,Kanwal A,Chhowalla M.Memory effect in thin films of insulating polymer and c-60nanocomposites.Nanotechnology,2006,17:145–151
    67Dang X D,Mikhailovsky A,Nguyen T Q.Measurement of nanoscale external quantum efficiency of conjugated polymer:fullerene solar cells by photoconductive atomic force microscopy.Appl Phys Lett,2010,97:113303
    68Alexeev A,Loos J,Koetse M M.Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy.Ultramicroscopy,2006,106:191–199
    69Douheret O,Lutsen L,Swinnen A,et al.Nanoscale electrical characterization of organic photovoltaic blends by conductive atomic force microscopy.Appl Phys Lett,2006,89:032107
    70Liau Y H,Scherer N F,Rhodes K.Nanoscale electrical conductivity and surface spectroscopic studies of indium-tin oxide.J Phys Chem B,2001,105:3282–3288
    71Mayer A C,Scully S R,Hardin B E,et al.Polymer-based solar cells.Mater Today,2007,10:28–33
    72Ou S S,Stafsudd O M,Basol B M.Space-charge-limited current measurement of traps in p-type electrochemically deposited cdte thin-films.Thin Solid Films,1984,112:301–308
    73Reid O G,Munechika K,Ginger D S.Space charge limited current measurements on conjugated polymer films using conductive atomic force microscopy.Nano Lett,2008,8:1602–1609
    74Pingree L S C,Reid O G,Ginger D S.Imaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cells.Nano Lett,2009,9:2946–2952
    75Yan H,Li D H,Lu K,et al.Evolution of polymer photovoltaic performances from subtle chemical structure variations.Phys Chem Chem Phys,2012,14:15127–15134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700