用户名: 密码: 验证码:
多年施用生物炭对河南烤烟种植区土壤呼吸的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Long-Term Biochar Application on Soil Respiration in Flue-Cured Tobacco Planting Fields in Henan Province
  • 作者:李亚森 ; 丁松爽 ; 殷全玉 ; 李佳轶 ; 周迪 ; 刘国顺
  • 英文作者:LI Ya-sen;DING Song-shuang;YIN Quan-yu;LI Jia-yi;ZHOU Di;LIU Guo-shun;Key Laboratory for Tobacco Cultivation of Tobacco Industry,College of Tobacco Science,Henan Agricultural University;
  • 关键词:生物炭 ; 土地呼吸 ; 土壤呼吸组分 ; 水热因子 ; 固碳减排
  • 英文关键词:biochar;;soil respiration;;soil respiration components;;hydrothermal factor;;carbon sequestration and emission reduction
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:河南农业大学烟草学院烟草行业烟草栽培重点实验室;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2017YFD0200808);; 中国烟叶公司技改项目(3401302);; 河南中烟工业有限责任公司项目(ZW2014005)
  • 语种:中文;
  • 页:HJKZ201902051
  • 页数:9
  • CN:02
  • ISSN:11-1895/X
  • 分类号:405-413
摘要
为探究生物炭施用对土壤呼吸的影响,采用5 a定位试验(2013~2017年)研究了不施生物炭(CK)、施用1. 5 t·hm-2生物炭(T1)、施用15 t·hm-2生物炭(T2)、施用45 t·hm-2生物炭(T3)这4种处理下土壤呼吸及土壤水热因子的动态变化规律.结果表明:(1)在土壤中连续5a施入中剂量生物炭(T2:15 t·hm-2)显著降低了烤烟生长季土壤呼吸速率,降幅为25. 89%;当施入量增至45 t·hm-2(T3)时土壤呼吸速率显著增加,增幅为21. 48%(P <0. 05).(2)长期中剂量生物炭的添加显著降低了土壤异养呼吸速率和自养呼吸速率,降幅分别为29. 80%和28. 75%;大剂量生物炭(T3:45 t·hm-2)的施入显著增加了土壤异养呼吸速率,增幅为28. 88%.低剂量生物炭(T1:1. 5 t·hm-2)和中剂量生物炭均显著增加土壤呼吸中自养呼吸的比例,大剂量生物炭的施入显著增加了异养呼吸的比例(P <0. 05).(3)低剂量生物炭显著降低了烤烟生长季土壤5 cm温度;大剂量生物炭显著降低了土壤5 cm湿度.土壤呼吸与土壤5 cm温度之间呈显著指数相关,与土壤5 cm湿度之间未表现出显著相关(P <0. 05).综上,连续5a低剂量生物炭的施用对土壤呼吸无影响,适量生物炭的施用具有固碳减排效应,大剂量生物炭施用则会适得其反,建议生物炭施用范围应控制在15 t·hm-2以内.
        A five year( 2013-2017) experiment was conducted to explore the effects of biochar application on the dynamic changes in soil respiration,soil water,and heat factors under four treatments: CK( without biochar),T1( with 1. 5 t·hm-2 biochar),T2( with15 t·hm-2 biochar),and T3( with 45 t·hm-2 biochar). The results showed that:(1) the soil respiration rate in the growing season of flue-cured tobacco was significantly reduced by 25. 89% under the five year application of medium-dose biochar( T2: 15 t·hm-2) in soil,while it was significantly increased by 21. 48% when the applied dose increased to 45 t·hm-2( T3)( P < 0. 05).(2) The longterm application of medium-dose biochar in the soil significantly reduced the soil heterotrophic respiration and autotrophic respiration rates by 29. 80% and 28. 75%,respectively. Meanwhile,the application of high-dose biochar( T3: 45 t·hm-2) significantly increased the heterotrophic respiration rate by 28. 88%. In addition,the application of low-dose biochar( T1: 1. 5 t·hm-2) and medium-dose biochar significantly increased the proportion of autotrophic respiration,whereas the high-dose biochar application significantly increased the proportion of heterotrophic respiration( P < 0. 05).(3) The addition of low-dose biochar to the soil significantly reduced the soil temperature at 5 cm in the growing season of flue-cured tobacco,while the high-dose application significantly reduced the soil humidity. There was a significant index correlation between soil respiration and soil temperature at 5 cm but no significant correlation with soil humidity at 5 cm( P < 0. 05). Ultimately,the application of low-dose biochar for five years in soil had no effect on soil respiration,and the application of the proper amount of biochar had a carbon sequestration effect.Additionally,large-dose biochar application may be counterproductive. It is recommended that the application range of biochar should be controlled within 15 t·hm-2.
引文
[1]王月玲,周凤,张帆,等.施用生物炭对土壤呼吸以及土壤有机碳组分的影响[J].环境科学研究,2017,30(6):920-928.Wang Y L,Zhou F,Zhang F,et al. Influence of biochar on soil respiration and soil organic carbon fractions[J]. Research of Environmental Sciences,2017,30(6):920-928.
    [2]陈泮勤,黄耀,于贵瑞.地球系统碳循环[M].北京:科学出版社,2004.
    [3] Dlxon R K,Solomon A M,Brown S,et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144):185-190.
    [4] Ciais P,Tans P P,Trolier M,et al. A large northern hemisphere terrestrial CO2sink indicated by the13C/12C ratio of atmospheric CO2[J]. Science,1995,269(5227):1098-1102.
    [5] Colantoni A,Evic N,Lord R,et al. Characterization of biochars produced from pyrolysis of pelletized agricultural residues[J].Renewable and Sustainable Energy Reviews,2016,64:187-194.
    [6] Jin J,Kang M J,Sun K,et al. Properties of biochar-amended soils and their sorption of imidacloprid,isoproturon,and atrazine[J]. Science of the Total Environment,2016,550:504-513.
    [7] Ren X H,Sun H W,Wang F,et al. The changes in biochar properties and sorption capacities after being cultured with wheat for 3 months[J]. Chemosphere,2016,144:2257-2263.
    [8] Han Y T,Cao X,Ouyang X,et al. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr(VI)from aqueous solution:Effects of production conditions and particle size[J]. Chemosphere,2016,145:336-341.
    [9] Tan X F,Liu Y G,Gu Y L,et al. Biochar-based nanocomposites for the decontamination of wastewater:a review[J].Bioresource Technology,2016,212:318-333.
    [10] Liu Y X,Lu H H,Yang S M,et al. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops Research,2016,191(3):161-167.
    [11] Mohamed B A,Ellis N,Kim C S,et al. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil[J].Science of the Total Environment,2016,566-567:387-397.
    [12] Bass A M,Bird M I,Kay G,et al. Soil properties,greenhouse gas emissions and crop yield under compost,biochar and cocomposted biochar in two tropical agronomic systems[J]. Science of the Total Environment,2016,550:459-470.
    [13] Purakayastha T J,Das K C,Gaskin J,et al. Effect of pyrolysis temperatures on stability and priming effects of C3and C4biochars applied to two different soils[J]. Soil and Tillage Research,2016,155(4):107-115.
    [14] Plaza C,Giannetta B,Fernández J M,et al. Response of different soil organic matter pools to biochar and organic fertilizers[J]. Agriculture,Ecosystems&Environment,2016,225:150-159.
    [15] Xu X Y,Kan Y,Zhao L,et al. Chemical transformation of CO2during its capture by waste biomass derived biochars[J].Environmental Pollution,2016,213:533-540.
    [16] Wu M X,Han X G,Zhong T,et al. Soil organic carbon content affects the stability of biochar in paddy soil[J]. Agriculture,Ecosystems&Environment,2016,223:59-66.
    [17] Subedi R, Taupe N, Pelissetti S, et al. Greenhouse gas emissions and soil properties following amendment with manurederived biochars:Influence of pyrolysis temperature and feedstock type[J]. Journal of Environmental Management,2016,166:73-83.
    [18]张阳阳,胡学玉,邹娟,等.生物炭输入对城郊农业区农田地表反照率及土壤呼吸的影响[J].环境科学,2017,38(4):1622-1632.Zhang Y Y,Hu X Y,Zou J,et al. Effects of biochar on surface albedo and soil respiration in suburban agricultural soil[J].Environmental Science,2017,38(4):1622-1632.
    [19] Reth S,Reichstein M,Falge E. The effect of soil water content,soil temperature,soil pH-value and the root mass on soil CO2efflux-A modified model[J]. Plant and Soil,2005,268(1):21-33.
    [20]张丁辰,蔡典雄,代快,等.旱作农田不同耕作土壤呼吸及其对水热因子的响应[J].生态学报,2013,33(6):1916-1925.Zhang D C,Cai D X,Dai K,et al. Soil respiration and its responses to soil moisture and temperature under different tillage systems in dryland maize fields[J]. Acta Ecologica Sinica,2013,33(6):1916-1925.
    [21]田冬,高明,黄容,等.油菜/玉米轮作农田土壤呼吸和异养呼吸对秸秆与生物炭还田的响应[J].环境科学,2017,38(7):2988-2999.Tian D,Gao M,Huang R,et al. Response of soil respiration and heterotrophic respiration to returning of straw and biochar in rape-maize rotation systems[J]. Environmental Science,2017,38(7):2988-2999.
    [22] Kim Y S,Makoto K,Takakai F,et al. Greenhouse gas emissions after a prescribed fire in white birch-dwarf bamboo stands in northern Japan,focusing on the role of charcoal[J]. European Journal of Forest Research,2011,130(6):1031-1044.
    [23] Liu X Y,Zheng J F,Zhang D X,et al. Biochar has no effect on soil respiration across Chinese agricultural soils[J]. Science of the Total Environment,2016,554-555:259-265.
    [24] Smith J L,Collins H P,Bailey V L. The effect of young biochar on soil respiration[J]. Soil Biology and Biochemistry,2010,42(12):2345-2347.
    [25] Ventura M,Zhang C,Baldi E,et al. Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard[J]. European Journal of Soil Science,2014,65(1):186-195.
    [26] Jones D L,Murphy D V,Khalid M,et al. Short-term biocharinduced increase in soil CO2release is both biotically and abiotically mediated[J]. Soil Biology and Biochemistry,2011,43(8):1723-1731.
    [27] Kuzyakov Y,Ehrensberger H,Stahr K. Carbon partitioning and below-ground translocation by Lolium perenne[J]. Soil Biology and Biochemistry,2001,33(1):61-74.
    [28]王丹丹,郑纪勇,颜永毫,等.生物炭对宁南山区土壤持水性能影响的定位研究[J].水土保持学报,2013,27(2):101-104,109.Wang D D,Zheng J Y,Yan Y H,et al. Effect of biochar application on soil water holding capacity in the southern region of Ningxia[J]. Journal of Soil and Water Conservation,2013,27(2):101-104,109.
    [29]颜永毫,郑纪勇,张兴昌,等.生物炭添加对黄土高原典型土壤田间持水量的影响[J].水土保持学报,2013,27(4):120-124,190.Yan Y H,Zhen J Y,Zhang X C,et al. Impact of biochar addition into typical soils on field capacity in Loess Plateau[J].Journal of Soil and Water Conservation,2013,27(4):120-124,190.
    [30]陈红霞,杜章留,郭伟,等.施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J].应用生态学报,2011,22(11):2930-2934.Chen H X,Du Z L,Guo W,et al. Effects of biochar amendment on cropland soil bulk density,cation exchange capacity,and particulate organic matter content in the North China Plain[J].Chinese Journal of Applied Ecology,2011,22(11):2930-2934.
    [31]刘玉学,刘微,吴伟祥,等.土壤生物质炭环境行为与环境效应[J].应用生态学报,2009,20(4):977-982.Liu Y X,Liu W,Wu W X,et al. Environmental behavior and effect of biomass-derived black carbon in soil:a review[J].Chinese Journal of Applied Ecology,2009,20(4):977-982.
    [32]张祥,王典,姜存仓,等.生物炭对我国南方红壤和黄棕壤理化性质的影响[J].中国生态农业学报,2013,21(8):979-984.Zhang X,Wang D,Jiang C C,et al. Effect of biochar on physicochemical properties of red and yellow brown soils in the south China region[J]. Chinese Journal of Eco-Agriculture,2013,21(8):979-984.
    [33]刘玉学,王耀锋,吕豪豪,等.不同稻秆炭和竹炭施用水平对小青菜产量、品质以及土壤理化性质的影响[J].植物营养与肥料学报,2013,19(6):1438-1444.Liu Y X,Wang Y F,Lv H H, et al. Effects of different application rates of rice straw biochar and bamboo biochar on yield and quality of greengrocery(Brassica chinensis)and soil properties[J]. Journal of Plant Nutrition and Fertilizer,2013,19(6):1438-1444.
    [34]陈心想,何绪生,耿增超,等.生物炭对不同土壤化学性质、小麦和糜子产量的影响[J].生态学报,2013,33(20):6534-6542.Chen X X,He X S,Geng Z C,et al. Effects of biochar on selected soil chemical properties and on wheat and millet yield[J]. Acta Ecologica Sinica,2013,33(20):6534-6542.
    [35]周志红,李心清,邢英,等.生物炭对土壤氮素淋失的抑制作用[J].地球与环境,2011,39(2):278-284.Zhou Z H,Li X Q,Xing Y,et al. Effect of biochar amendment on nitrogen leaching in soil[J]. Earth and Environment,2011,39(2):278-284.
    [36] Liang B,Lehmann J,Solomon D,et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal,2006,70(5):1719-1730.
    [37] Zhang Q Z,Wang Y D,Wu Y F,et al. Effects of biochar amendment on soil thermal conductivity, reflectance, and temperature[J]. Soil Science Society of America Journal,2013,77(5):1478-1487.
    [38] Zheng Z M,Yu G R,Fu Y L,et al. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content:A trans-China based case study[J].Soil Biology and Biochemistry,2009,41(7):1531-1540.
    [39] Pang X Y,Zhu B,LüX T,et al. Labile substrate availability controls temperature sensitivity of organic carbon decomposition at different soil depths[J]. Biogeochemistry,2015,126(1-2):85-98.
    [40]李虎,邱建军,王立刚.农田土壤呼吸特征及根呼吸贡献的模拟分析[J].农业工程学报,2008,24(4):14-20.Li H,Qiu J J,Wang L G. Characterization of farmland soil respiration and modeling analysis of contribution of root respiration[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(4):14-20.
    [41]张宇,张海林,陈继康,等.耕作措施对华北农田CO2排放影响及水热关系分析[J].农业工程学报,2009,25(4):47-53.Zhang Y,Zhang H L,Chen J K,et al. Effects of different tillage practices on CO2emission fluxes from farmland in North China Plain and the analysis of soil temperature and moisture[J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(4):47-53.
    [42] Hidetoshi A, Benjamink S, Haefelem S, et al. Biochar amendment techniques for upland rice production in Northern Laos:1. Soil physical properties,leaf SPAD and grain yield[J].Field Crops Research,2009,111(1-2):81-84.
    [43]杨平,杜宝华.国外土壤二氧化碳释放问题的研究动态[J].中国农业气象,1996,3(1):100-103.Yang P,Du B H. The study of CO2releasing from the soil in agro-economical system[J]. Chinese Journal of Agrometeorology,1996,3(1):100-103.
    [44]王立刚,邱建军,李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究[J].土壤肥料,2002,(6):13-17.Wang L G,Qiu J J,Li W J. Study on the dynamics of soil respiration in the field of summer-corn in Huanghuaihai region in China[J]. Soil and Fertilizer,2002,(6):13-17.
    [45]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):469-476.Liu S H,Fang J Y. Effect factors of soil respiration and the temperature's effects on soil respiration in the global scale[J].Acta Ecological Sinica,1997,17(5):469-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700