用户名: 密码: 验证码:
锰掺杂的碳点作为纳米模拟酶用于比色检测毒死蜱
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mn Doped Carbon Dots as Nano-mimetic Enzyme for the Colorimetric Detection of Chlorpyrifos
  • 作者:白秋月 ; 杨春亮 ; 林丽云 ; 叶剑芝
  • 英文作者:BAI Qiuyue;YANG Chunliang;LIN Liyun;YE Jianzhi;Huazhong Agricultural University;Agricultural Products Processing Research Institute , Chinese Academy of Tropical Agricultural Sciences;
  • 关键词:掺杂碳点 ; 纳米模拟酶 ; 毒死蜱 ; 比色检测
  • 英文关键词:doped carbon dots;;nano-mimetic enzyme;;chlorpyrifos;;colorimetric detection
  • 中文刊名:RDZX
  • 英文刊名:Chinese Journal of Tropical Crops
  • 机构:华中农业大学;中国热带农业科学院农产品加工研究所;
  • 出版日期:2019-06-25
  • 出版单位:热带作物学报
  • 年:2019
  • 期:v.40
  • 基金:海南省自然科学基金青年基金项目(No.219QN290);; 农业农村部财政专项农产品质量安全监管(风险评估)项目(No.GJFP2018011);; 中国热带农业科学院基本科研业务费专项资金项目(No.1630122017020)
  • 语种:中文;
  • 页:RDZX201906024
  • 页数:10
  • CN:06
  • ISSN:46-1019/S
  • 分类号:161-170
摘要
以碳酸锰、脲、柠檬酸、双氧水为原料,采用微波加热法合成具有纳米模拟酶催化活性的锰掺杂碳点(Mn-CDs)。Mn-CDs可催化3,3',5,5'-四甲基联苯胺(TMB)产生蓝色的ox-TMB。乙酰胆碱酯酶(AChE)催化底物乙酰硫代胆碱(ATCh)生成的硫代胆碱(TCh),还原所生成的ox-TMB使溶液蓝色褪去。有机磷类农药能有效抑制AChE的活性,使TCh的生成量减少,溶液的蓝色变深。根据吸光度的变化可以定量检测有机磷农药含量,由溶液颜色的深浅可以构建毒死蜱的可视化半定量检测方法。本研究表征了Mn-CDs的表面结构及微观形貌,以有机磷类农药主要品种毒死蜱作为分析模型,初步探讨了比色法检测毒死蜱的原理;考察了毒死蜱检测的最优条件,检测的线性范围是0~3.5μg/mL,检测限为0.013μg/mL。将该检测方法用于苹果实际样品中毒死蜱的测定,回收率为95.2%~102.8%,表明该方法有望应用于实际样品中有机磷的高灵敏测定。
        Manganese-doped carbon dots(Mn-CDs) with nano-simulated enzyme catalytic activity were synthesized by citric acid, urea, hydrogen peroxide and manganese carbonate. Mn-CDs catalyze the production of blue ox-TMB by 3,3',5,5'-tetramethylbenzidine(TMB). Acetylcholinesterase(AChE) catalyzes the thiocholine(TCh) produced by the substrate acetylthiocholine(ATCh), and the resulting ox-TMB reduces the blue color of the solution. Organophosphorus pesticide can effectively inhibit the activity of AChE, reduce the production of TCh, and darken the blue of the solution. A visual detection method for organophosphorus pesticide can be constructed according to the depth of the solution color. The work described the surface structure and micromorphology of Mn-CDs. Utilized chlorpyrifos as an analytical model,which is the main species of organophosphorus pesticides. The principle of colorimetric detection of chlorpyrifos was discussed. The conditions for the detection of chlorpyrifos were investigated. The linear range of detection was 0-3.5μg/mL and the detection limit was 0.013 μg/mL. The detection method was applied to the determination of chlorpyrifos in apple samples, and the recovery rate ranged from 95.2% to 102.8%, indicating that the method is expected to be applied to the highly sensitive determination of organic phosphorus in actual samples.
引文
[1]Yan X,Li H,Han X,et al.A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect[J].Biosensors and Bioelectronics,2015,74:277-283.
    [2]Zheng M D,Wang C,Wang Y Y,et al.Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim[J].Talanta,2018,185:309-315.
    [3]李凤球,潘宏程,袁亚利.核酸适配体生物传感器在农残检测中的研究进展[J].分析实验室,2018,37(4):488-496.
    [4]Prince C,Ravinder K,Shiva S V J,et al.Organophosphorus pesticides residues in food and their colorimetric detection[J].Environmental Nanotechnology,Monitoring&Management,2018,10:292-307.
    [5]Fu G,Chen W,Yue X,et al.Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry[J].Talanta,2013,103:110-115.
    [6]Nsibande S A,Forbes P B.Fluorescence detection of pesticides using quantum dot materials-A review[J].Analytica Chimica Acta,2016,945:9-22.
    [7]钟冬莲,汤富彬,莫润宏,等.分散固相萃取-高效液相色谱-串联质谱法测定铁皮石斛中8种有机磷农药残留[J].分析试验室,2017,36(5):571-575.
    [8]Qian G L,Wang L M,Wu Y R,et al.A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay(ELISA)for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples[J].Food Chemistry,2009,117(2):364-370.
    [9]Zheng Q Q,Chen Y,Fan K,et al.Exploring pralidoxime chloride as a universal electrochemical probe for organophosphorus pesticides detection[J].Analytica Chimica Acta,2017,982:78-83.
    [10]丁媛媛,弓晓娟,刘洋,等.高效橘色荧光碳量子点的合成及其在细胞成像中的应用[J].山西大学学报(自然科学版),2018,5(8):1-11.
    [11]Pang Y J,Huang Z L,Yang Y F,et al.Colorimetric detection of glucose based on ficin with peroxidase-like activity[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2018,189:510-515.
    [12]Huang H,Weng Y,Zheng L,et al.Nitrogen-doped carbon quantum dots as fluorescent probe for“off-on”detection of mercury ions,L-cysteine and iodide ions[J].Journal of Colloid and Interface Science,2017,506:373-378.
    [13]Mehta V N,Jha S,Basu H,et al.One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells[J].Sensors and Actuators B:Chemical,2015,213(5):434-443.
    [14]Li H,Kang Z,Liu Y,et al.Carbon nanodots:synthesis,properties and applications[J].Journal of Materials Chemistry,2012,22(46):24230-24253.
    [15]Shi W,Wang Q,Long Y,et al.Carbon nanodots as peroxidase mimetics and their applications to glucose detection[J].Chemical Communications,2011,47(23):6695-6697.
    [16]Zhong Q M,Chen Y Y,Su A M,et al.Synthesis of catalytically active carbon quantum dots and its application for colorimetric detection of glutathione[J].Sensors and Actuators B:Chemical,2018,273:1098-1102.
    [17]Wang B,Liu F,Wu Y Y,et al.Synthesis of catalytically active multielement-doped carbon dots and Application for colorimetric detection of glucose[J].Sensors and Actuators B:Chemical,2018,255:2601-2607.
    [18]Zhang L,Zhou Q,Liu Z,et al.Novel Mn3O4 micro-octahedra:promising cataluminescence sensing material for acetone[J].Chemistry of Materials,2009,21(21):5066-5071.
    [19]Lu J,Yang J X,Wang J Z,et al.One-pot synthesis of fluorescent carbon nanoribbons,nanoparticles,and graphene by the exfoliation of graphite in ionic liquids[J].ACS Nano,2009,3(8):2367-2375.
    [20]Yang Z,Yao Z,Li G,et al.Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J].ACS Nano,2011,6(1):205-211.
    [21]Dong Y Q,Pang H C,Yang H B,et al.Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J].Angewandte Chemie-International Edition,2013,52(30):7800-7804.
    [22]Duan J,Chen S,Dai S,et al.Shape Control of Mn3O4Nanoparticles on Nitrogen-Doped Graphene for Enhanced Oxygen Reduction Activity[J].Advanced Functional Materials,2014,24(14):2072-2078.
    [23]Lombardi J R,Birke R L,Lu T,et al.Charge-transfer theory of surface enhanced Raman spectroscopy:Herzberg-Teller contributions[J].The Journal of Chemical Physics,1986,84(8):4174-4180.
    [24]Cattelan M,Agnoli S,Favaro M,et al.Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures[J].Chemistry of Materials,2013,25(9):1490-1495.
    [25]Duan J,Chen S,Dai S,et al.Shape control of Mn3O4nanoparticles on nitrogen‐doped graphene for enhanced oxygen reduction activity[J].Advanced Functional Materials,2014,24(14):2072-2078.
    [26]张云飞,徐勇前,孙世国.碳纳米管催化氧化脱氢反应的研究进展[J].化学通报,2013,76(9):800-805.
    [27]Song Y,Qu K,Zhao C,et al.Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection[J].Advanced Materials,2010,22(19):2206-2210.
    [28]Li H X,Yan X,Lu G Y,et al.Carbon dot-based bioplatform for dual colorimetric and fluorometric Sensing of organophosphate pesticides[J].Sensors and Actuators B:Chemical,2018,260:563-570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700