用户名: 密码: 验证码:
硅基锂离子电池负极材料的容量衰减及改进研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improvement of capacity fading of Si-based cathode for lithium-ion battery
  • 作者:戴剑锋 ; 朱晓军 ; 刘骥飞 ; 李维学 ; 王青 ; 贾钰泽
  • 英文作者:Dai Jianfeng;Zhu Xiaojun;Liu Jifei;Li Weixue;Wang Qing;Jia Yuze;State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology,Provincial and Ministerial Co-construction;School of Material Science and Engineering,Lanzhou University of Technology;National Nickel and Cobalt Advanced Materials Engineering Research Center;
  • 关键词:锂离子电池 ; 负极材料 ; 体积膨胀 ; SEI膜
  • 英文关键词:lithium-ion battery;;cathode material;;volume expansion;;solid electrolyte interface film
  • 中文刊名:HGXC
  • 英文刊名:New Chemical Materials
  • 机构:兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室;兰州理工大学材料科学与工程学院;国家镍钴新材料工程技术研究中心;
  • 出版日期:2019-05-15
  • 出版单位:化工新型材料
  • 年:2019
  • 期:v.47;No.560
  • 基金:国家自然科学基金(11664023)
  • 语种:中文;
  • 页:HGXC201905052
  • 页数:5
  • CN:05
  • ISSN:11-2357/TQ
  • 分类号:228-232
摘要
硅材料的比容量(Li15Si4,3590mAh/g)是已商用化的石墨负极(LiC6,372mAh/g)的10倍,硅负极的商业化可有效提高单体电芯的容量,已成为当前研究热点。然而,由于硅负极材料在充放电循环时存在400%的体积膨胀,容易导致电极材料粉化开裂而从集流体上剥落,使得活性物质与活性物质、集流体之间失去电接触,同时不断形成新的固体电解质相界面膜(SEI膜),最终导致电化学性能的恶化。本研究从硅负极材料的储锂机理出发,提出硅负极材料锂化/脱锂化产生的体积膨胀效应导致的粉化开裂和SEI膜不稳定问题的最新调控方法和研究方向,为硅负极材料的研究应用提供支持。
        Silicon has gained a huge attention in the last decade,because it has a theoretical capacity(3590 mAh·g-1 for Li15 Si4 phase)of ~10 times higher than that of representative graphite(372 mAh·g-1 for LiC6),which attribute to improve the single cell capacity heavily.However,it suffers from fast capacity fading of electrode,loss of contact with the current collector,and loss of active material contact due to continuous volume expansion and contraction of up to 400%during cycling.The mechanism of lithium storage on the issue that the latest technologies and the research progress of large volume effect during alloying/dealloying with lithium led to electrode pulverization cracking and unstable solid electrolyte interface(SEI)layer were discussed,which can provide research support for the applying of silicon cathode materials.
引文
[1]Jing S L,Jiang H,Hu Y J,et al.Face-to-face contact and openvoid coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life[J].Adv Funct Mater,2015,25(33):5395-5401.
    [2]Goodenouge J B,Park K S.The li-ion rechargeable battery:a perspective[J].J Am Chem.Soc,2013,135(4):1167-1176.
    [3]戴剑锋,刘骥飞,付比,等.LiNi1/3Co1/3Mn1/3O2正极材料中SO24-的危害及脱除[J].兰州理工大学学报,2016,42(4):169-172.
    [4]Xie X Q,Wang S J,Kretschmer K,et al.Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries[J].J Colloid Interface Sci,2017,499:17-32.
    [5]Lim S,Kim J H,Yamada Y,et al.Improvement of rate capability by graphite foam anode for Li secondary batteries[J].J Power Sources,2017,355:164-170.
    [6]畅波,李亚娥,康利涛,等.核壳结构Si/C复合负极材料的制备与储锂性能研究[J].化工新型材料,2018,46(2):79-82.
    [7]王磊,胡鹏飞,乔永民,等.大米淀粉硬碳负极材料的制备及其电化学性能研究[J].化工新型材料,2018,46(1):229-232.
    [8]田华玲,粟智.兰炭基活性炭材料的制备及其电化学性能[J].兰州理工大学学报,2015,41(5):28-31.
    [9]朱彦荣,刘思远,诸荣孙,等.锂离子电池MLi2Ti6O14(M=2Na,Sr,Ba)负极材料的研究进展[J].化工新型材料,2018,46(2):35-38.
    [10]Lai S C.Solid lithium-silicon electrode[J].J Electrochem Soc,1976,123(8):1196-1197.
    [11]Wilson A M,Wayb M,Dahn J R,et al.Nanodispersed silicon in pregraphitic carbons[J].J App Phy,1995,77(6):2363-2369.
    [12]Obrovac M N,Krause L J.Reversible cycling of crystalline silicon powder batteries and energy storage[J].J Electrochem Soc,2007,154(2):A103-A108.
    [13]Pan L,Wang H B,Gao D C,et al.Facile synthesis of yolkshell structured Si—C nanocomposites as anodes for lithiumion batteries[J].Chem Commun,2014,50(44):5878-5880.
    [14]He Y,Yu X Q,Li G,et al.Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction[J].J Power Sources,2012,216(11):131-138.
    [15]Huggins R A.Lithium alloy negative electrodes[J].J Power Sources,1999,81-82(1-2):13-19.
    [16]Hatchard T,Dahn J R.In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J].J Electrochem Soc,2004,151(6):A838-A842.
    [17]Limthongkul P,Jang Y I,Dudbey N J,et al.Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage[J].Acta Mater,2003,1(4):1103-1113.
    [18]Zhang H W J.A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J].J Power Sources,2011,196(1):13-24.
    [19]David L,Bhandavat R,Barrera U,et al.Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries[J].Nat Commun,2016,7:10998.
    [20]Lee B S,Son S B,Park K M,et al.Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode[J].J Power Sources,2012,206(2):267-273.
    [21]Liu Q,Cui Z,Zou R J,et al.Surface coating constraint induced anisotropic swelling of silicon in Si-void@SiOx nanowire anode for lithium-ion batteries[J].Small,2017,13(13):1603754.
    [22]Zhang L,Rajagopalan R,Guo H P,et al.A green and facile way to prepare granadilla-like Silicon-based anode materials for li-ion batteries[J].Adv Funct Mater,2016,26(3):440-446.
    [23]Chang J B,Huang X K,Zhou G H,et al.Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode[J].Adv Mate,2014,26(5):758-764.
    [24]Lee J K,Smith K B,Hayner C M,et al.Silicon nanoparticlesgraphene paper composites for Li ion battery anodes[J].Chem Commun,2010,46(15):2025-2027.
    [25]Chen Y L,Hua Y,Shen Z,et al.Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes[J].Electrochim Acta,2016,210:53-60.
    [26]Wang Y H,He Y,Xiao R J,et al.Investigation of crack patterns and cyclic performance of Ti-Si nanocomposite thin film anodes for lithium ion batteries[J].J Power Sources,2012,202(1):236-245.
    [27]Zhao L Y,Dvorak D J,Obrovac M N.Layered amorphous silicon as negative electrodes in lithium-ion batteries[J].J Power Sources,2016,332:290-298.
    [28]Li B,Xiao Z J,Zai J T,et al.A candidate strategy to achieve high initial coulombic efficiency and long cycle life of Si anode materials:exterior carbon coating on porous Si microparticles[J].Mater Today Energy,2017,5:299-304.
    [29]Zhao J,Lu Z D,Wang H T,et al.Artificial solid electrolyte interphase-protected LixSi nanoparticles:an efficient and stable prelithiation reagent for lithium-ion batteries[J].J Am Chem Soc,2015,137(26):8372-8375.
    [30]Wu H,Du N,Shi X X,et al.Rational design of three-dimensional macroporous silicon as high performance Li-ion battery anodes with long cycle life[J].J Power Sources,2016,331:76-81.
    [31]Zong L Q,Yan J,Liu C,et al.Precise perforation and scalable production of Si particles from low-grade sources for highperformance lithium ion battery anodes[J].Nano Lett,2016,16(11):7210-7215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700