用户名: 密码: 验证码:
新元煤矿水力冲孔增透技术试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study of Permeability Improvement Technologywith Hydraulic Flushing Boreholes in Xinyuan Coal Mine
  • 作者:孟德玉
  • 英文作者:MENG De-yu;Yangquan Coal Industry (Group) Co.,Ltd.;
  • 关键词:水力冲孔造穴 ; 卸压增透 ; 瓦斯抽采 ; 突出煤层
  • 英文关键词:hydraulic punching for caving;;pressure relief and permeability improvement;;gas extraction;;outburst coal seam
  • 中文刊名:META
  • 英文刊名:Coal Science & Technology Magazine
  • 机构:阳泉煤业集团(有限)责任公司;
  • 出版日期:2019-04-25
  • 出版单位:煤炭科技
  • 年:2019
  • 期:v.40;No.158
  • 语种:中文;
  • 页:META201902019
  • 页数:6
  • CN:02
  • ISSN:32-1491/TD
  • 分类号:62-67
摘要
松软低透高瓦斯突出煤层瓦斯含量高、透气性差、突出危险性大、瓦斯抽采效率低、治理难度大,严重制约着安全生产。研究结果表明:采用高效钻冲一体化设备进行水力冲孔造穴可有效解决松软低透高瓦斯突出煤层抽采效率低等问题;气相压裂、水力冲孔造穴联合方案抽采效果较差,现场不宜划分高瓦斯区域和瓦斯异常区域,统一按高瓦斯治理方案执行;确定出煤率为新元煤矿水力冲孔造穴实施效果的考察指标,残余瓦斯含量与出煤率呈负相关,3煤的出煤率不应小于2. 15‰。
        Soft, low permeability and high gas outburst coal seam has high gas content, poor permeability, high risk of outburst, low gas extraction efficiency and difficult control, which seriously restricts the safety of production. The research results showed that hydraulic punching and caving with high efficiency drilling and flushing equipment can effectively solve the problems of low extraction efficiency in soft, low permeability and high gas outburst coal seam;the combined scheme of gas phase fracturing and hydraulic punching and caving has poor extraction effect; it is unsuitable to divide high gas area and gas abnormal area in the field, and implement the scheme of high gas control in a unified way; and the coal yield was determined as an index for evaluating the effect of hydraulic punching caving in Xinyuan Coal Mine. The residual gas content is negatively correlated with the coal yield, and the coal yield of No. 3 coal should not be less than 2. 15‰.
引文
[1]俞启香,王凯,杨胜强.中国采煤工作面瓦斯涌出规律及其控制研究[J].中国矿业大学学报,2000,29(1):9-14.
    [2]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139.
    [3]张翔,辛程鹏,杜锋.不同冲煤量对有效抽采半径的影响规律研究[J].中国安全生产科学技术,2017,13(9):115-120.
    [4]袁亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报,2016,41(1):1-6.
    [5]张农,薛飞,韩昌良.深井无煤柱煤与瓦斯共采的技术挑战与对策[J].煤炭学报,2015,40(10):2 251-2 259.
    [6]梁冰,秦冰,孙福玉,等.煤与瓦斯共采评价指标体系及评价模型的应用[J].煤炭学报,2015,40(4):728-735.
    [7]闫志铭,张翔,王亮,等.煤层渗透率各向异性对本煤层瓦斯预抽影响规律的研究[J].矿业安全与环保,2017,44(5):45-48.
    [8]王凯,李波,魏建平,等.水力冲孔钻孔周围煤层透气性变化规律[J].采矿与安全工程学报,2013,30(5):778-784.
    [9]郝富昌,孙丽娟,左伟芹.考虑流变特性的水力冲孔孔径变化规律及防堵孔技术[J].煤炭学报,2016,41(6):1 434-1 440.
    [10]魏建平,李波,刘明举,等.水力冲孔消突有效影响半径测定及钻孔参数优化[J].煤炭科学技术,2010,38(5):39-42.
    [11]白俊杰.新景矿气相压裂与水力造穴相结合的增透效果研究[J].煤,2018(3):16-17,44.
    [12]霍晶晶.阳煤寺家庄矿底板岩巷水力造穴卸压增透技术研究[J].机械管理开发,2017,32(8):89-91.
    [13]石建文,韩柯,范毅伟,等.水力冲孔造穴瓦斯抽采强化机制及其在寺家庄矿的应用[J].煤矿安全,2017,48(8):109-112.
    [14]王伟.高压旋转水射流破煤及其冲孔造穴卸压增透机制与应用[D].徐州:中国矿业大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700